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ABSTRACT
Anonymous communication systems are vulnerable to long
term passive“intersection attacks”. Not all users of an anony-
mous communication system will be online at the same time,
this leaks some information about who is talking to who. A
global passive adversary observing all communications can
learn the set of potential recipients of a message with more
and more confidence over time. Nearly all deployed anony-
mous communication tools offer no protection against such
attacks. In this work, we introduce TASP, a protocol used by
an anonymous communication system that mitigates inter-
section attacks by intelligently grouping clients together into
anonymity sets. We find that with a bandwidth overhead of
just 8% we can dramatically extend the time necessary to
perform a successful intersection attack.

1. INTRODUCTION & MOTIVATION

Anonymous communication systems (ACS) safeguard against
the ability to link a sender and receiver of a communication.
ACS route messages through a series of relays. Mix networks
require only a small number of relays to be honest to provide
unlikability, usually at the expense of latency, whereas low-
latency designs such as the Tor network [5] require a larger
fraction of honest relays to assure a clients anonymity.

Recently proposed ACS, such as Vuvuzela [11], Riffle [9],
AnonPoP [7] and cMix [1], offer strong security against a
powerful adversary, as all clients communicate in rounds,
either by choice (sending a real message) or by sending a
cover message that is indistiguishable from a real message.
We argue that security based on the assumption of constant
client participation is impracticle and weakens the usability
of such a system, which is the ultimate goal for any commu-
nication tool.

Today, Tor is by far the most widely used ACS and uses
Onion Routing to deliver messages to clients. Tor does not
operate in mixing rounds and does not require clients to
send cover messages but is vulnerable to statisical disclosure
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attacks [3] and long term intersection attacks [2, 8, 4].
Intersection attacks allow a global passive adversary, who

observes all incoming and outgoing messages of an ACS, to
link a targeted sender and receiver. To perform such an at-
tack, when a client sends a message, the adversary records
the recipients who were online and could potentially have
been the intended target. This is done repeatedly until the
intersection of all the potential recipients reveals a single
client. Such an attack is not purely theory, recently the FBI
were able to de-anonymize a person of interest by intere-
secting the number of Tor users within a specific geographic
location [6]. While intersection attacks are deterministic,
statistical disclosure attacks allow an adversary to estimate,
among a group of clients, the likelihood that a target recip-
ient was the receiver of a communication. Inevitably, with
the churn of an ACS user base, messages will become linkable
via statistical disclosure and intersection attacks eventually.

In this work, we consider simple long term intersection
attacks, when the rate at which a client can send messages
is fixed. We investigate how well an ACS can resist an in-
tersection attack when an adversary has complete view of
the system. To this end, take the following scenario: a ser-
vice offers clients the ability to anonymously post a blog.
For example, this could be via Tor where each client hosts
their own blog on a Tor hidden service. We explore the
frequency that a service, protecting against intersection at-
tacks, will allow a client to post against the utility of the
service. For example, if a client is posting a blog they may
be able to tolerate delays in the order of hours or days,
whereas a live tweeting service reporting on current events
will require shorter delays.

Over time, natural churn will occur in the user base of an
ACS, some new clients may join whereas other clients may
stop using the service altogether. Clients may start to post
at different times to others within an anonymity set, or stop
posting, thereby shrinking the anonymity set, and weaken-
ing resistance to an intersection attack. The aim of an ACS
that resists intersection attacks is to delay this anonymity
degradation process. Leakage is inevitable as we do not want
to force all clients to send cover messages each round; rather
we would like to intelligently group clients in to anonymity
sets with clients who share similar communication patterns,
thus providing a natural safeguard against rapidly shrinking
anonymity sets.

In this work we attempt to answer the following: how
does an ACS intelligently group clients in to anonymity sets?
What utility can a client expect to gain by doing so? To
answer the first question we introduce TASP, a protocol that
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Figure 1: Clients post messages to servers through
an ACS. The attacker eavesdrops on all incoming
and outgoing messages.

can be used by an ACS to form anonymity sets. TASP
introduces a bootstrapping phase that learns the posting
patterns of each client, and then groups clients with similar
communication patterns together into anonymity sets.

2. SYSTEM MODEL

We consider an ACS that operates in rounds. Each round
is of some length of time, t. Messages are packaged in such a
way that, to an external observer, they are indistinguishable
from one another. All messages received by an ACS are kept
in the system until the end of a round, they are then flushed
and sent to their intended destination. Each client may send
a maximum of one message per round. The length of a
round is a parameter choice of the ACS and will be domain
specific.

3. THREAT MODEL

Figure 1 shows the threat model we work under. We con-
sider a global passive adversary with the ability to monitor,
but not alter, all incoming and outgoing messages that pass
through the ACS. Over time it is highly probably that each
client will exhibit a unique communication pattern, the ad-
versary will record for each client, the possible recipients,
and repeatedly intersect this set to recover the intended re-
ceivers of the clients communications.

Since we rate-limit clients to sending at most one message
per round, we degrade the ability for an adversary to prob-
abilistically profile a client based on rates of sending. That
is, a statistical disclosure attack in which an adversary at-
tempts to assign probabilities of recipients of a communica-
tions will be no better than assigning a uniform probability
to each client within their anonymity set.

4. PROTOCOL

We introduce two methods by which clients may be as-
sembled into anonymity sets by an ACS.

4.1 Possibilistic Anonymity Sets
Buddies [12]. The Buddies architecture provides k -anonymity1

to a client publishing to a shared board. The authors do
this by denying a clients request to publish a message if the
system deems them to be susceptible at that time to an in-
tersection attack. Buddies comes at the expense of latency,
essentially blocking a client from using the service once their
anonymity set has dropped below some threshold. This is
particularly problematic for usability and availability of low-
latency publishing tools such as a live tweeting service.
Possibilistic Anonymity. We form possibilistic anonymity
sets in the following way: when a client sends their first mes-
sage their anonymity set is the group of clients that send
in the same round. In subsequent rounds, if the original
client sends a message and clients within their anonymity
set do not, they are removed from the anonymity set. In
the Buddies variant a threshold is specified, if the size of the
anonymity set drops below this threshold the client will no
longer be allowed to send messages as they are vulnerable
to intersection attacks. In this work, we set the threshold
to zero, essentially allowing a client to send messages until
they can be uniquely identified. We do this because we do
not want to inhibit the ability for a client to use the system
until they are completely vulnerable to an attack.

4.2 TASP

TASP is run by an ACS and operates in two phases, a
learning phase, and an online phase. The learning phase
runs at the inception of the system, requiring all clients to
send a message each round while learning which clients sent
a real message and which sent cover messages. Clients are
then assigned to anonymity sets based on their communica-
tion profiles. After this, the online phase runs, the system
operates as normal with clients no longer expected to send
cover messages. Since clients in anonymity sets share similar
communication profiles, the adversary will require a greater
amount of time until a successful intersection attack can be
performed, when compared with no protection against such
attacks.
Learning. Initially, in the learning phase, all clients must
send a message in each round, either a real or cover mes-
sage. During this phase, an external observer is unable to
distinguish which clients are actively taking part in the pro-
tocol and which are sending cover messages. TASP is able to
distinguish real messages from cover messages, and actively
learns the posting patterns of all clients. It then groups
clients with similar posting patterns together into anonymity
sets. The number of rounds in which the learning phase runs
is a parameter choice of the ACS.
Online. After the learning phase, TASP initiates the online
phase, in which clients are no longer required to send cover
messages. For each anonymity set, messages are flushed
when either all clients within that set have sent a message,
or at the end of a round.

1k -anonymity is the property that a client shares a commu-
nication profile that is similar to at least k− 1 other clients.



If a round ends and clients within an anonymity set have
sent messages, clients within the same anonymity set that
have not sent messages are removed from the anonymity set
and are no longer allowed to use the ACS as they are now
vulnerable to an intersection attack.
Grouping mechanism. TASP uses dynamic time warping
(DTW) [10] to group clients in to anonymity sets. DTW is
an algorithm for measuring the similarity of two time se-
quences, that may be of unequal length2. DTW works as
follows: given two times series:

A = a1, a2, ..., an, B = b1, b2, ..., bm

construct a warped path:

W = w1, w2, ..., wl

where max(n,m)≤ l < n + m and wk = (i, j) where i ∈
{1, ..., n}, j ∈ {1, ...,m}, k ∈ {1, ..., l}. DTW constructs the
optimal warped path to minimize the distance between A
and B; the warped path distance is given by:

d(A,B) = d(W ) =
l∑

k=1

dist(wki, wkj)

where dist is Euclidean distance and dist(wki, wkj) is the
distance between ai and bj at the kth element of W .

At the end of the learning phase, for each client, TASP
produces a time sequence of the rounds in which the client
sent a real message. It then computes the similarity of this
time sequence compared to all other clients’ time sequences.
If the similarity distance is below a certain threshold then
the client is included in the anonymity set. The distance
threshold is another design choice for the system, a large
threshold will result in large anonymity sets, but with a
downside that many of the clients may not share similar
posting patterns. However, for small systems this may be
the best that can be done without incurring high delays.

5. ANALYSIS

Here we give a brief theoretical analysis which aims to pro-
vide some intuition behind TASP. Let n clients be grouped
in to an anonymity set as described in Section 4.2. Let the
probability that client ci posts in round tj be given by δcij ,
for i ∈ {1, ..., n}, j ≥ 1.

Ideally we would like all clients within an anonymity set
to have the same posting patterns; for some fixed δj ∈ [0, 1],
δcij = δj ∀i, j. Then, the probability that the anonymity
set decreases by k between two rounds is:(

n

k

)
(1− δj)kδn−k

j , k ∈ {1, ..., n}

More generally, the probability that the anonymity set
decreases by at least k, is equal to:

n∑
l=k

(
n

l

)
(1− δj)lδn−l

j , k ∈ {1, ..., n} (?)

Within an anonymity set, TASP groups clients that share
a similar probability of participating in a given round. TASP
groups clients such that for each round tj , ∃δj , ε ∈ [0, 1], such
that δj ≤ δcij ≤ δj + ε, ∀i ∈ {1, ..., n}. If TASP can sort

2Further explanation of DTW can be found at [10].
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Figure 2: TASP and possibilistic anonymity set sizes
for an online phase of 500 hours with a round length
of 1 hour.
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Figure 3: TASP and possibilistic anonymity set sizes
for an online phase of 500 hours with a round length
of 2 hours.

clients in to anonymity sets such that ε is neglibible then we
can analyze the degradation of anonymity using (?).

Example. Let n = 1000, k = 100. With δj = 0.9, the prob-
ability that after the next round the anonymity set decreases
to less than 900 clients is equal to

∑1000
l=100

(
1000

l

)
0.1l0.91000−l =

0.52. At δj = 0.91, this probability becomes 0.15 and at
δj = 0.95, this probability becomes 8.41 × 10−11. Clearly
good groupings in which all members are equally likely to
participate in rounds lead to persistent anonymity sets.

6. EVALUATION

We performed experiments on a dataset consisting of tweets
posted by a number of clients throughout November 20123.
The length of a round in the learning phase was chosen to
be one hour and the length of the learning phase was 24
rounds. We consider a subset of clients within this dataset
that posted at least five times within the learning phase, al-
lowing us to uncover information about their posting habits.
This subset consisted of 9195 clients. Using TASP and pos-
sibilistic anonymity sets, we then examine the rate of degra-

3http://cnets.indiana.edu/groups/nan/webtraffic/
websci14-data/



dation of anonymity sets in two cases, when a round in the
online phase is one hour in length and when it is two hours
in length4. For comparison, we also include a theoretical
grouping of clients in which there is a 90% probability that
any client within that set posts in a round. This allows us
to establish if the anonymity sets created by TASP are well
formed.

Figures 2 and 3 show the reduction in anonymity set
sizes for online round lengths of one hour and two hours,
respectively. We can see that the best performing TASP
anonymity set is similar in size and rate of decrease to the
best performing possibilistic anonymity set grouping of clients
over the same period, but on average our method produces
larger anonymity sets that decrease at a slower rate. If
clients can tolerate a delay of two instead of one hour, their
ability to withstand long term intersection attacks dramat-
ically increase. Finally, for a grouping of 1000 clients in
which each client has a 90% probability of sending a mes-
sage in a round, there is a 99% chance the anonymity set will
shrink to a single client within 200 hours. The average TASP
anonymity set does not degrade to a single client within 500
hours, and so we can be sure that these anonymity sets do
contain clients that share similar communication profiles.

Clearly our method has advantages over the possibilistic
anonymity set approach as anonymity sets are more stable
in size. Therefore it will be more costly for an attacker to
mount an intersection attack. Additionally, only 8% more
messages were required to be sent to the ACS to achieve this
attack resistance, compared to possibilistic anonymity sets.

7. DISCUSSION & FUTURE WORK

TASP removes the unrealistic expectation that all clients
can commit to participation in every round. However, cur-
rently it can only be applied to an ACS at its inception. Af-
ter the learning phase TASP does not consider new clients
joining the system, though this could be handled by requir-
ing new clients to post at every round until the most ap-
propriate anonymity set is found. In other words, each new
joining client could have their own learning period for some
amount of time after they join, after which they are not
required to send cover traffic.

TASP’s current method of client removal from anonymity
sets is inflexible. Currently if just one client posts in a round,
all other clients within that anonymity set are removed, leav-
ing the client that posted a message vulnerable. This was
an intentional decision, we did not want to inhibit clients
behaviour in any way. Still, it may be beneficial to investi-
gate how long a client can tolerate delays before posting a
message. For example, TASP could flush messages from an
anonymity set at the end of a round only if some threshold
of clients within that set have posted message.

We also experimented with longer learning phases. We
found that a longer learning phase results in more stable,
long-lived anonymity sets, since there is more time to un-
cover the posting patterns of all clients, and so group clients
in to appropriate anonymity sets. However, a longer learn-
ing phase will also require more cover messages to be sent;
quantifying this trade-off is left for future work.

4The entire dataset consists of 27.8M tweets from many
more clients over 720 hours.
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APPENDIX
A. TASP PROTOCOL ALGORITHMS

Data: n clients {c0, .., cn−1}, round start time t0,
round stop time tk−1, DTW distance function
f : P × P → R where P is the message profile of
a client, distance threshold d.

Result: Anonymity set for each client.
for i← 0 to n− 1 do

create message profile Pi = [ ] for client ci.
for j ← 0 to k − 1 do

receive mji, a message from client ci at time tj .
if mji is not a cover message then

Add mji to Pi.
for i← 0 to n− 1 do

Pi = [m0i, ...,mli] where l ≤ k − 1.
AnonSeti = [ ]
for h← 0 to n− 1 do

if f(Pi, Ph) < d then
Add client ch to AnonSeti.

return AnonSeti
Algorithm 1: TASP learning protocol.

Data: n AnonSets {AnonSet0, ...,AnonSetn−1}, round
time tm (m > k − 1).

Result: Anonymity set for each client.
for i← 0 to n− 1 do

for cj ∈ AnonSeti do
if cj does not send message between tm and
< tm+1 and ci does then

Remove cj from AnonSeti
return Flush messages at time tm+1

Algorithm 2: TASP online protocol.


