Posts Tagged ‘Кибернетический Черепаха’

1958 – “Tortilla” Cybernetic Tortoise – (Ukraine)

Fig. 38. Schematic of the charge, voltage conversion, the element changes tropism and chain contact device "turtle" "Tortilla".

Fig. 39. Schematic of extreme search direction of the "turtle" "Tortilla".

Fig. 40. Schematic of reaction "turtle" "Tortilla" with the whistle.


Information and images courtesy Waldemar Dekański from Poland (January 2010).

Hello Reuben!
I'm sending you Tortilla materials just received from Ukraine. It's part of a book by A. Yvahnenko "Technical Cybernetics". According to data the project and construction of the turtle was done by three engineers from Automatics Laboratory of Electrotechnical Institute in Kiev: T. Kravec, Y. Krementulo i E. Shukaylo. I presume it was built in 1958, the book describing the turtle was published in 1959. In the same year article was issued by J.Krementulo in "Automatika" magazine. I'm during intensive search for that article.
Cheers, Waldemar.
——————————————
Кибернетическая черепаха. Рассмотрим еще пример программной системы, где самоизменение программы подчиняется не одному, а нескольким требованиям. Таким примером может быть «черепаха» Вальтера [9], [59], [50]. «Черепаха» представляет собой автоматическую игрушку,
и
воспроизводящую все основные черты поведения живой черепахи. Конструктивно она выполнена в виде небольшой тележки на трех колесах, на которой установлены два сервомотора (ход вперед и поворот), электромагнитные
и
реле, электронная аппаратура и питающий аккумулятор.
Если аккумулятор хорошо заряжен, то «черепаха»
ведет себя как сытая и ищет темный угол в комнате. Если
аккумулятор разряжен, то «черепаха» ищет кормушку.
Такой «кормушкой» служит место для зарядки аккумулятора, освещенное сильной электрической лампой.«Черепаха» ищет свет и, подойдя к месту зарядки, стоит там пока не зарядится аккумуляторы. Затем снова уходит в более темное место комнаты.
Первые «черепахи» Вальтера (под названием «Элси» и «Элмер») реагировали на источник света только в зависимости от состояния своего «желудка» (аккумулятора).
443
В следующей разработке («черепаха» «Кора») автор осуществил еще добавочную реакцию на свист. При свисте «черепаха» замирает, т. е. некоторое время не движется. Если свист повторяется весьма часто, то «черепаха» перестает на него реагировать и продолжает либо искать «кормушку», либо уходит от нее.
Если «черепаха» наталкивается на препятствия, то программа ее действий изменяется (элемент самоизменения программы). Она делает ход назад, поворот, а затем только продолжает поиск «кормущки».
Правила действий (алгоритм) «черепахи» можно записать в виде табл. 5.
В табл. 5 сигналы расположены по силе их действия. Сигнал от контактного датчика имеет преимущество перед сигналом фотоэлемента, а сигнал от микрофона действует сильнее всех других сигналов.
124
Из таблицы следует, что главными программами являются: программа N9 1, обеспечивающая поиск источника света, и программа М 2, обеспечивающая более быстрое движение «черепахи» по направлению к источнику света или от него. Каждая из этих программ может иметь ряд вариантов (количество ходов и величина их не оговаривались выше). Из вариантов программы тот лучше, при котором :
а) «черепаха» быстрее находит наиболее яркий источник света;
6) найдя источник, возможно быстрее движется к немо.- (или от него).
Важно также, чтобы «черепаха» наиболее точно выполняла требования, указанные в таблице, и не теряла источника света из своего поля зрения, т. е. чтобы, перейдя к программе No 2, не возвращалась снова где-либо в пути к программе М. 1. Таким образом, «черепаха» имеет несколько показателей качества программы, кроме того, ее движение еще подчинено ряду дополнительных требований (ограничений).
Ниже мы рассмотрим более подробно схемы управления «черепахи», удовлетворяющие этим требованиям.
После «черепах» английского инж. Вальтера автоматические «черепахи» разрабатывали австрийский инж. Земанах, немецкий инж. Эйхер и др.
В СССР различные конструкции «черепах» разрабатывались в Институте автоматики и телемеханики АН СССР (инж. А. М. Петровский и Р. Б. Васильев), в Московском инженерно-физическом институте, в Институте автоматики Грузинской ССР и др. «Черепаха» «Тортилла», описываемая ниже, разработана в лаборатории автоматического регулирования Института электротехники АН УССР. Экспериментальная часть выполнена инженерами Т. Д. Кравцем, Ю. В. Крементуло и Е. И. Шукайло.
С точки зрения техники экстремального регулирование основная программа «черепахи» может быть решена двумя различными способами :
1) при помощи системы колебательного экстремального поиска наиболее яркого места горизонта, осуществляемого одним фотоэлементом («черепаха» «Тортилла-1 ») ;
2) при помощи неколебательной обратной связи, осуществляемой двумя фотоэлементами, направленными под
125
небольшим углом в деве соседние точки горизонта («черепаха» «Тортилла-2»).
В последнем случае мы располагаем всеми точками экстремальной характеристики одновременно и потому можно осуществить систему неколебательного установления экстремума (подробнее см. выше) .
Колебательная система благодаря наличию фильтра более помехоустойчива. Неколебательная система проще и надежнее.
Для краткости дадим описание только «черепахи» «Тортилла-1» (с колебательным поиском)1.
На рис. 38 изображена схема экстремального регулирования направления движения «черепахи» «Тортилла-1». В ней применена система шагового экстремального регулирования, рассмотренная в предыдущей главе.
Система экстремального поиска «черепахи» «Тортилла-1» действует следующим образом. Напряжение, вырабатываемое фотоэлементом ЦГ-4, усиливается при помощи электронного усилителя и поступает затем на контактные устройства шагового распределителя ШР, имеющего четыре поля. Цикл работы системы весьма прост. На первом контакте второго поля шаговый распределитель производит стирание предыдущей записи с первого электронного запоминающего устройства 3У1, а вторым контактом первого поля производится на нем новая (первая) запись напряжения. Третий контакт второго поля осуществляет стирание записи со второго запоминающего устройства 3У2, а третий контакт четвертого поля включает напряжение на сервомотор СМ1, который поворачивает фотоэлемент на шаг 7,5°. После этого четвертым контактом первого поля производится вторая запись усиленного напряжения фотоэлемента на 3У2, а пятым контактом третьего поля – сравнение напряжений первой и второй записи. Элемент логического действия ЭЛД включает сервомотор СМ1 в направлении, обеспечивающем движение (вращение) фотоэлемента к направлению экстремальной (наибольшей или наименьшей) освещенности. затем цикл операций повторяется сначала.
одиннадцатый и двенадцатый контакты четвертого поля (рис. 39) используются для: а) включения напряжения на
1 «Черепаха» «Тортилла-2» описана Ю. В. Крементуло в журнале «Автоматика», Х2 2, 1959.
126
сер вомотор СМ2 продольного перемещения «черепахи»; б) замыкания на короткое время цепи реле перемены тропизма 1; в) перехода от программы \5 3 к программе \5 1 или 2 в случае, если «черепаха» встретила препятствие (см. табл. 5); г) для подачи импульсов на схему реакции «черепахи» на звук (рис. 40). Измерительным элементом системы служит мост М с двумя стабиловольтами СГ-ЗС см. рис. 38,. При определенном напряжении (выбираемом Рис. 40. Схема реакции «черепахи» «Тортилла» на свисток. произвольно путем установки тех или иных сопротивлении моста) напряжение на выходе моста изменяет знак, что и приводит к переключению поляризованного реле перемены тропизма РП.
Поляризованные реле РП2 и РПз образуют элемент логического действия ЭЛД по схеме равнозначности.
зарядка аккумулятора производится через контактную шину КШ и релерегулятор РР. Напряжение постоянного тока аккумулятора при помощи вибропреобразователя ВП преобразуется в высокое напряжение переменного тока. Последнее выпрямляется и используется для питания
Под переменой тропизма «черепахи» понимается переход от поиска света к поиску темноты и наоборот, в зависимости от напряжения аккумулятора.
9 441 129
анодов 3У и усилителя фототоков. Датчик препятствий ДП при встрече с «черепахой» какого-либо препятствия срабатывает и при помощи реле РП,4 изменяет программу хода вперед на программу хода назад. В этом случае «черепаха» делает один шаг назад (на одиннадцатом контакте) и некоторое время двигается по направлению, перпендикулярному с направлением на источник света. Это достигается включением вместо основного вспомогательного
Рис. 41. Общий вид «черепахи» «Тортилла-2» .
фотоэлемента, направленного перпендикулярно оси «черепахи». Режим обхода препятствий кратковременный : как только подвижный контакт шагового распределителя дойдет снова до 12-ой ламели, то, как видно из схемы (рис. 39), основная программа «черепахи» восстанавливается.
Частота импульсов определяет собой скорость действий «черепахи». Скорость передвижения «черепахи» оказывается достаточной, если полный оборот распределителя происходит за б сек. В качестве генераторов импульсов можно использовать контактное устройтво, вращаемое отдельным двигателем.
Рассмотрим теперь действие цепи, осуществляющей реакцию «черепахи» на свисток (рис. 40). В качестве микрофона М использована пьезоэлектрическая телефонная трубка. Схема резонансного усилителя подобна схеме акустического управления радиоприемником, описанной в журнале
130
«Радио», М 4 за 1957 г. Реле Р1 на выходе схемы срабатывает под действием звука (свисток с частотой около
9000 гц) и останавливает оба сервомотора СМ1 и СМ2 «черепахи» (рис. 39).
Время остановки «черепахи» определяется параметрами нагрузки (1? и С) детектора. Если свистки повторяются редко, то конденсатор С успевает разряжаться, реле Р1 отпускает контакт и «черепаха» начинает снова двигаться. Если же свистки следуют часто, то напряжение на обмотке реле Р1 подымается выше некоторого предела, срабатывает реле Р2, шунтирует контакт реле Р1 и «черепаха» перестает реагировать на свистки. Блокировка реле Р2 снимается основным распределителем при прохождении через 12-ый контакт, если конденсатор к этому времени достаточно разрядится.
График типичного пути «черепахи» «Тортилла-1» к источнику света представляет собой ломаную линию. Общий вид «черепахи» «Тортилла» представлен на рис. 41.
Данные элементов «черепахи» «Тортилла» приведены па рис. 38-40.
Шаг поворота фотоэлемента составляет величину от 7,5 до 60° при частоте импульсов от 0,5 до 3 импульсов/сек. «Черепаха» реагирует на источник света (лампа накаливания мощностью 25 вт) на расстоянии до 3 м.
Некоторые дополнительные технические данные «черепахи» «Тортилла-1»
РП – поляризованное реле типа РП;
СМ – двигатели па 24 или вит. 27 в;
ШИ – шаговый искатель;
Тр – трансформатор, имеющий:
= 2 х 60 вит; д1 = 0,6 мм;
W2 = W3 = 3000 вит; д23 = 0,12 мм; В1В2 – выпрямители, собранные на ДГ-Ц24;
Б – аккумулятор типа 5 НКН-10: Напряжение тахогенератора 6 в.

—————
English Translation

Cybernetic tortoise. Consider another example of a software system, where self-transformation program obeys no one, but several requirements. An example might be "tortoise" Walter [9], [59], [50]. "Turtle" is an automatic toy
and
reproducing all the main features of the behavior of living turtles. Structurally, it has been implemented in the form of a small truck on three wheels, in which there are two servo-motor (move forward and turn), electromagnetic
and
relays, electronic equipment and power supply battery.
If the battery is well charged, the "turtle"
behaves as a well-fed and looking for a dark corner in the room. If
the battery is discharged, the "turtle" is looking for a manger.
Such a "trough" is a place to charge the battery, illuminated by a strong electric light. "Turtle" is looking for the light and going to a place charging stands there until you charge the batteries. Then again takes place in a dark room.
The first "turtle" Walter (called "Elsie" and "Elmer") reacted to the light source only depending on the state of his "stomach" (battery).
443
In the next development ( "turtle" "bark"), the author conducted more additional responses to the whistle. When whistling of "turtle" freezes, ie, some time not moving. If the whistle is repeated very often, the "turtle" ceases to react to it and continues to seek a "feeder" or away from it.
If the "turtle" is impeded, the program changed its course of action (element of self-transformation program). She makes a move back, turn, and then just continues to search for "kormuschki.
Terms of action (algorithm) "turtle" can be written in the form of tables. 5.
Table. 5 signals are located on the strength of their actions. The signal from the contact sensor has an advantage over the photocell signal and the signal from the microphone effect is stronger than all the other signals.
124
The table shows that the main programs are: Program N9 1, provides a search of the light source, and the program of M 2, which provides a more rapid movement of "turtle" in the direction of the light source or away from him. Each of these programs may have a number of options (number of moves and not subject to value them above). Of the options program that is better, in which:
a) "turtle" quickly finds the most brilliant source of light;
6) finding the source as quickly as possible moves to dumb .- (or him).
It is also important to "turtle" most closely meet the requirements listed in the table and not lose the light source from its field of view, ie that by going to the program No 2, did not return again, somewhere in the path of the program M. 1. Thus, the "turtle" has a quality program, in addition, its movement is still subject to a number of additional requirements (constraints).
Below we consider the more detailed management scheme "turtle", satisfying those requirements.
After the "turtle" the British engineer. Walter automatic "turtle" develop an Austrian engineer. Zeman, a German engineer. Eyher etc.
In the USSR, various constructions of "turtles" were developed at the Institute of Automation and robot USSR (Ing. A. Petrovsky, R. B. Vasiliev), at the Moscow Engineering Physics Institute, the Institute of Automation of the Georgian SSR, etc. "Turtle" Tortilla ", described below, was developed in the laboratory of automatic control of the Institute of Electrical Akad. The experimental part is made by engineers TD Kravtsov, V. Krementulo and EI Shukaylo.
From the standpoint of extreme technology management core program of "turtle" can be solved in two different ways:
1) with the help of vibrational find the most extreme places of the bright horizon of single photocell ( "turtle" "Tortilla-1");
2) using nonoscillatory feedback undertaken by the two photocells directed at
125
slight angle to the horizon Maiden neighbor ( "turtle" "Tortilla-2").
In the latter case, we have all the points of extreme characteristics simultaneously, and therefore can be carried out to establish a system of nonoscillatory extremum (see above).
Oscillatory system thanks to the filter more robust. Nonoscillatory system is simpler and more reliable.
For brevity, only give a description of "turtle" "Tortilla-1" (with vibrational search) 1.
Fig. 38 is a diagram of extremal control the direction of "turtle" "Tortilla-1". It used a system of extremal control step considered in the previous chapter.
System of extreme search for "turtle" "Tortilla-1 operates as follows. Voltage, provided by a photocell CG-4, augmented by an electronic amplifier and then fed to the contact device stepper distributor WAF, which has four fields. The cycle of the system is very simple. At the first contact of the second field stepper valve makes erasing the previous record with the first electronic storage device 3U1, and the second contact of the first field is made on it new (first) record voltage. Third contact, the second field carries erasing records from the second storage device 3U2, and the third contact, the fourth field includes the voltage on the servo motor CM1, which turns the photocell step 7,5 °. After this, the fourth pin of the first field is the second record amplified voltage to the photocell 3U2, and the fifth contact, a third of the field – a comparison of the stress of the first and second record. Element of the logical steps ELD includes servo CM1 in the direction of securing the movement (rotation) of the photocell to the direction of the extreme (highest or lowest) illumination. then the cycle of operations is repeated again.
eleventh and twelfth contacts of the fourth field (Fig. 39) are used to: a) the inclusion of voltage
1 "Turtle" "Tortilla-2" described YV Krementulo in the journal "Automation", A2 2, 1959.
126
Ser vomotor SM2 longitudinal movement of "turtle", and b) circuit for a short time relay circuit changes tropism; 1) the transition from the program \ 5 3 to the program \ 5 1 or 2 if the "Tortoise" obstacles encountered (see Table. 5) d) to supply pulses to the reaction scheme "turtle" to the sound (Fig. 40). The measuring element of the system is a bridge with two M stabilivolt SG-AP, see Fig. 38. At a certain voltage (selectable Fig. 40. Scheme of the reaction of "turtle" "Tortilla" on the whistle. Arbitrarily by setting the resistance of some of the bridge) the bridge output voltage changes sign, which leads to a shift of the polarized relay RP tropism changes.
Polarized relay IS2 and RPZ constitute an element of logical steps ELD scheme equivalence.
Charging the battery is made through the contact bus SH and releregulyator PP. Voltage DC battery with vibrator MP is converted to high voltage alternating current. Last rectified and used to power
Under the change of tropism "turtle" refers to the transition from search to search the world of darkness and vice versa, depending on battery voltage.
9 441 129
anodes 3U and amplifier photocurrents. Sensor obstacles DC at a meeting with the "turtle" is no impediment, and is triggered by relay RP, 4 modifies the program moves ahead on the program of the back. In this case, "turtle" makes one step back (at the eleventh contact) and for some time moving in a direction perpendicular to the direction of the light sources. This is achieved by inserting instead of the main support
Fig. 41. General view of the "turtle" "Tortilla-2".
photocell directed perpendicular to the axis of "turtle". Mode to avoid obstructions brief: as soon as the movable contact stepper distributor comes back to the 12th slats, then, as seen from the scheme (Fig. 39), the main program "Turtles" is restored.
The frequency of pulses determines the speed of action "Turtles". Speed of movement "turtle" is sufficient, if the total turnover of the distributor is used for the second. As pulse generators can use the contact ustroytvo waved in a separate engine.
We now consider the effect of the chain, carrying out the reaction of "turtle" on the whistle (Fig. 40). As the microphone M used piezoelectric handset. Scheme of the resonant amplifier circuit is similar to the acoustic / radio, described in the journal
130
"Radio", No. 4 for 1957 Relay R1 at the circuit output is triggered under the effect of sound (a whistle with a frequency of about
9000 Hz) and stops the servomotor both CM1 and SM2 "turtle" (Fig. 39).
Time stop "turtle" is determined by the parameters of load (1? And C) detector. If the whistles are rarely repeated, the capacitor C has time to be discharged, the relay R1 releases the contact, and "turtle" again begins to move. If, however, often followed by the whistles, the voltage across the relay coil R1 rises above a certain limit, relay P2, shunts the relay contact P1 and "turtle" ceases to respond to whistles. Blocking relay P2 is removed the main distributor in passing through the 12th contact, if the capacitor at that time sufficiently discharged.
Schedule a typical path of "turtle" "Tortilla-1" to the light source is a broken line. General view of the "turtle" "Tortilla" is presented in Fig. 41.
These elements of the "turtle" "Tortilla" shown in Fig. 38-40.
Step turning the photocell is a quantity from 7.5 to 60 ° at a frequency of pulses from 0,5 to 3 pulses / sec. "Turtle" responds to the light source (incandescent lamp of 25 W) at a distance of 3 m.
Some additional technical data "turtle" "Tortilla-1"
RP – polarized relay type RP;
SM – engines pas 24 or vitamin. 27 in;
SHI – step seeker;
Tr – transformer with:
= 2 x 60-vit; D1 = 0.6 mm;
W2 = W3 = 3000 vitamin; d23 = 0.12 mm; V1V2 – rectifiers, gathered at the DW-TS24;
B – Battery type 5 ICH-10: Tacho Voltage 6.

Pdf is Russian original here.
 

1965 – Cybernetic Tortoise – (Russian)

Простая кибернетика
Автор:Е. Копытов, В. Салов, Т. Шорикова
Название:Простая кибернетика
Издательство:Молодая гвардия
Год:1965
———————-
Simple cybernetics
Author: E. Kopytov, V. Salov, T. Shorikova
Title: A simple cybernetics
Publisher: Young Guard
Year: 1965

Thanks to Waldemar Dekański  from Poland for locating the source for this Cybernetic Tortoise.

Original Russian text originally used found here.

 


Pioneer in the practical conduct simulating living creatures is rightly considered to be English neurophysiology Walter Gray.  His model "Turtle" can develop a "conditional reflex".  It is so designed that, natalkivayas the obstacle, turns back.  At the moment of collision with the barrier it is dealt whistle.  So is repeated several times, after which the "bug" "learn to" turn back on the whistles, not yet touching obstacles.  Whistle indicates "Turtle" the obstacle, sends it to the subject, signals about it.  And in this case as the object of action is not himself a whistle and another object – obstacle from the meeting which evaded the bug and the existence of which said a whistle and so.  Besides it is worth mentioning the work of Berkeley with his "protein" "Turtles" Ashby.  And below the domestic model.

 This cyber toy feeds from three batteries for a pocket lamp, this kit is enough for three hours of continuous work.  "Turtle" perform the following operations: at power operates the leading engine, and it goes straight ahead; if his motion "turtle" impact on the barrier, it departs ago, and at the same time included a second engine, which makes her turn away from obstacles.  When the light hit in the right eye "Turtle" on the right turns, and if zasvete left eye – the left, that is, it always strives to light.  If the toy "hears" loud sound, it "frightening" and stops for a few seconds and then goes forward.
 "Turtle" able to make a conditional reflex.  To this end, in its collision with the barrier must file a whistle, then the model as a mechanism to remember that meets obstacle on the road after the warning whistle, and the next whistle "turtle" has not stopped, but down from an imaginary obstacles.
 "Turtle" gathered at the transistors and miniature relay DC-type "RES-10" and "RES-12" and consists of multiple nodes: node sound management of the leading hub motor, motor control lamps, as well as lighting and "memory".
 The most difficult knot is sound, which consists of two parts: the actual sound of electronic relays and relay time defining the stop "turtle".  Audible relay (Fig. 67) collected on four types of transistors.  P14 and works as follows: signals from the microphone comes on the first cascade amplifier voltage

Fig.  67. Scheme sound node "turtle".

sound frequencies.  He assembled the regular pattern with earthing emitter.
 Enhanced signals received on the next cascade, made on transistors T2.  In this chain collector cascade included resonant circuit, made up of inductance and condenser C3.  This contour is set to 800 Hz frequency, thus strengthening the cascade will be greatest at frequencies 600 – 1000 Hz.  This is necessary in order to "turtle" is not responsive to their own noises, the frequency of which lies within the 50 – 200 Hz.
 Last cascade enhance voltage transistors assembled at T3.  As a collector of the transistor included output transformer primary winding which is also set to the frequency of 800 Hz through the condenser C5.  Various strain, was withdrawn from the secondary winding transformer, rectifier straighten mostikovym gathered at the semiconductor diodes.
 Straightening the stress in negative polarity

Fig. 68.
 come to the base transistor T4, in the collector circuit which included an executive relay.  With the growing negative building at the base of the transistor collector current of his sharply increasing, and the relay is triggered.  Contacts K1 lead into effect transistor relay time, collected at the transistors T5 and T6 (Fig. 68).  Time relays is a dvuhkaskadny DC amplifier transistors to direct and reverse reducibility with great gain.
 The base of the first cascade is connected with less power source through R – S-chain.  When the capacitor C6 discharged, based transistor T5 no bias voltage and current collector small.  Short-circuiting the capacitor nakorotko S6 contacts K1a by an increase in the relay P1 causes collector current first cascade.  This increase, in turn, causes actuation relay included in the second collector transistor.  Contacts relay R4 will remain closed until the condenser is not épuisées through resistance R9 and base-station emitter first cascade.  Time excerpts depends on the size of the condenser S6, R9 resistance coefficient and strengthen the application of transistors.
 Relays P4 has two pairs of contacts: a pair of normally closed, while another – open.  Normally closed contacts K 4 and include the food chain motors, and normally open contacts K4b work in a logical pattern Matches "I", with contacts K3 including "memory" "turtle".  Thus, when the whistles "turtle" stops for a few seconds.
 The collision with an obstacle contacts K11 work related to the buffers.  They zakorachivayut capacitor C7 and thus include relay time performance on transistors T7 and T8.  The work of this scheme is similar to the above, and requires no explanation.  In collector transistor T8 included two electromechanical relays: R2 and R3.  Relays R2 reversiruet leading and turning engines – "turtle" moves back and turns aside.  Turn happens to read, with more talk through the course of turning motor does not go as a diode D1 is included in the shut-off area.  In operation relay R2 polarity supply voltage is changing the engine and a diode D1 conducts current.  Turning engine begins to rotate and tougher moves associated with its axis.  Tougher leverage through the system turns the front wheels.  At the end of the course cams installed hard contact K9, which disables the engine of food.  The steering mechanism has three such sustained contact, two of which (K9 and K10) placed in extreme positions cams and an average (K8), when the "turtle" goes straight.  Once R2 Cup relay anchor, polarity supply voltage engine change again, and will talk at a price: D2 diode – a vicious contact K 8 – turning motor PM.  until tougher than razomknet contact K8. relays R3 works in a logical pattern Matches "I" to include electronic "memory".
 "Memory" "turtle" is a time electronic relay, which is designed for 40-60 seconds.  It is triggered only when the collision with a barrier and sound (Postal) occur simultaneously, that is, when contacts and K3 and K.4 b. both trapped and zakorachivayut capacitor C5. Relays R6 contacts K6, blocking the food chain engines.  Now when filing whistle "tortoise" will not stop and go back, as well as relay R2 and R3 work through contacts K4a and blocked food motors.
 In light of "turtle" responds through fotosoprotiv flax, which are connected to amplifiers DC on transistors T11 and T12.  In publicizing fotosoprotivle bright light of the negative potential on the basis of one or another transistor increases, causing alarm relay R5 or P7.  Contacts relay P7 included parallel contacts K8, that is hard to contact the steering mechanism, and with the closure of "turtle" starts to move left.  In operation R5 is changing polarity of the supply steering motor, diode D, conducts current forward, and "turtle" is moving right.  "Turtle" mounted on the chassis elliptical shape h180h3 size of 240 mm.  Placement of motors, batteries, food, engines and electronic blocks illustrated 69, 70, 71.
 As a drive DC motors used type DIP-1, which consume little power and expanded force, sufficient for the traffic of toys and turning it.  Leading motor rotation of the wheel passes through the worm gearbox with 1:30 slowdown, worm gear has a direct adhesion wheel.  It should be noted that mechanical work must be implemented very carefully:

Fig.  69. "Turtle" withdrawn from "shell" (seen from left).

Transfer of engines should easily rotate and does not have a play, it is desirable to strengthen the wheel of miniature bearings, etc.
 Transistors T6, T8, T10-reverse conductivity, or P101 type P8, the rest-type P13 or P14. Tranzistory matched with a small initial shock collector and increased at least 20.  Resistance and capacitors – small. Relays P7 and R3 – miniature, type RES-9, relays R2, R5 and R6 – the type RES-9, a relay R1-type RES-10.
 All relays are subject to modifications: attenuated spring, approaching contacts in order to reduce the current operation and lower supply voltage.  Following changes in the current operation is reduced 2.5 times.  The operation also need to produce with sufficient thoroughness and accuracy.  To eliminate interference from the sound of engines

 Fig.  70. "Turtle" withdrawn from "shell" (seen from right).
 node feeds from three successive included battery type "D-0, 06".  These batteries are placed in makeshift cassette with the findings for recharging.

 Fig.  71. "Turtle" withdrawn from "shell" (rear view).  Electrolytic capacitors must be matched with a small current leakage.  Microphone – primers such as "DEMSH".  The transformer has a core section 1 cm 2.  Figures its winding: primary – 500 turns of PE-0, 1; secondary – 150 turns of PE-0, 18.
 Forging "turtle" beginning with the sound settings hub.  Connect food and to give input signal from the sound generator with a frequency of 900 Hz and amplitude of 5 mv.  Selection of tanks and S3 capacitors C5 seeking operation relay at this frequency.  If the release occurs when the signal more than 15 mv, transistors should be applied with great gain.


 
 Fig.  72. A general view of "turtle".  Then proceed to build a relay time for transistors T5 and T6.  To do so closes S6 nakorotko capacitor, a collector in the chain consistently with relay
 include milliampermetr.  With the closure of S6 current collector rises to 20-25 May and then gradually reduced to 1-3 May.  If the value of current with the full discharge condenser will be more May 5, it should change the transistor T5 to another, less current primary collector, or choose an electrolytic capacitor with a small diversion.  Time stops "turtle" regulated resistance R9 and is 4-5 seconds.  The remaining relay time regulated the same way. Fotorele do not need to adjust, need only use transistors with a relatively high gain.

Tags: , , , , ,