
No right to remain silent: Isolating Malicious Mixes
Hemi Leibowitz

Bar-Ilan University, IL

Ania Piotrowska

University College London, UK

George Danezis

University College London, UK

Amir Herzberg

Bar-Ilan University, IL

ABSTRACT
Mix networks are a key technology to provide network anonymity,

used for messaging, voting and private lookups. However, simple

mix networks are insecure against malicious mixes, which can drop

or delay packets to facilitate traffic analysis attacks. Mix networks

with provable robustness address this by using complex and ex-

pensive proofs of correct shuffling, which come with a cost and

make assumptions that are unnatural to many settings in which mix

networks are deployed. We present Miranda, a synchronous mix

network mechanism, which is provably secure against malicious

mixes – yet retaining the simplicity, efficiency and practicality of

mix network designs. Miranda uses first-hand experience of unre-

liability by mixes and clients, to derive a mix ‘reputation’, and to

ensure that each active attack – including dropping of packets –

results in reduction in the connectivity of the malicious mixes, thus

reducing their ability to attack. Besides the practical importance

of Miranda itself, our results are applicable to other mix networks

designs and anonymous communication, and even unrelated set-

tings in which reputation could provide effective defense against

malicious participants.

KEYWORDS
Anonymity, mix networks, byzantine attacks

1 INTRODUCTION
Mix networks [5] are an established method for providing com-

munications anonymity for senders and receivers. Typically, a mix

network is used by sending messages over a cascade of multiple

mixes. A single non-corrupted mix in the cascade suffices, to en-

sure anonymity against a passive attacker. In the ‘classical’ mix

network design, messages are layer encrypted, and each mix re-

moves one layer of the encryption, until the last mix can see the

final destination together with the (encrypted) message. Layered-

encryption mix networks are simple and efficient, and have been

deployed in practical mix network systems, e.g., Mixminion [6] and

Mixmaster [30].

However, such ‘classical’ mix networks are insecure against ac-
tive traffic analysis attacks, often involving dropping or delaying
of packets by malicious mixes. Previous work demonstrates that

denial-of-service attacks can be used to enhance de-anonymization

in mix networks [4], so-calledn−1 attacks can be used to trace pack-
ets over honest mixes [33], and the pre-conditions for disclosure

attacks can be re-created through dropping packets [1].

There have beenmultiple efforts to extendmix networks, in order

to ensure anonymity against malicious mixes. Several proposals use

more advanced cryptographic mechanisms, such as zero-knowledge

proof of correct mixing [2]. However, those are complex, restrictive

and have considerable, possibly prohibitive, overhead. They require

re-encryption mix networks to support ‘efficient’ proofs, which

restrict the size of messages to single group elements too small for

email, or even media rich instant messaging.

There have been alsomultiple efforts to secure layered-encryption

mix networks against active malicious mixes – and we provide an

overview of those efforts as part of our discussion of related work.

However, although the impact of active attacks is severe, it is not

easy to detect such attacks and even harder to identify and penalize
the rogue mixes. This is particularly true since malicious mixes may

also make false reports of honest mixes being unreliable to exclude

them from the network, or to gain any other advantage. Indeed,

this direction has been mostly abandoned after several attempts

were found vulnerable or to offer insufficient guarantees.

In this work, we return to this basic problem of layered-encryption

based mix networks robust to malicious, active mixes. We present

Miranda, a practical, efficient reputation-based layered-routing mix

network, together with analysis showing that it is secure against

active, malicious mixes. Our design includes a secure, decentralized

mix directory authorities, for selecting and distributing cascades

once every epoch, based on reputation and evidences for faults in

specific mixes and links between mixes.

We found that some of the most challenging attacks by rogue

mixes involves strategically dropping packets, typically from a spe-

cific sender, to detect a recipient which receives less messages – a

variant of the disclosure attack. It is a challenge to detect such behav-

ior and identify the attacking mix, without breaking the anonymity.

Often, mixes have to drop packets due to congestion control or

when decryption fails. Also, the verification of the mixes’ behavior

often results in contradicting statements.

Miranda deals with such challenges, by carefully providing ev-

idences of misbehavior of a mix. In particular, a mix provides a

signed receipt upon receiving a packet, and mixes disconnect from

a peer which does not send a receipt. Miranda also detects mixes

which fail to forward messages, and they are removed from the

mixnet. We refer to these mechanisms as ‘no right to remain silent’,

hence the name Miranda
1
.

Contributions This paper makes the following contributions:

Definition of loop packets in decryption mix networks. We

propose an encoding for security ‘loop packets’, that may

be used to securely test the network for dropping attacks.

The Miranda mechanism. Miranda is a mechanism that detects

and mitigates dropping attacks while retaining the simplic-

ity, efficiency, and scalability of the classical layered-based

1
The “Miranda warning” is the warning used by the US police, in order to notify people

about their rights before questioning them.

1

mix networks. Hence, it is appropriate for practical imple-

mentation and use.

Mix directory authorities. Miranda design explicitly includes

the mix network management by a set of directory author-

ities, who periodically every epoch, select and distribute

new cascades.

Use of reputation and evidences against active attacks. Our

techniques leverage local reports of faults to defeat active

attackers (mixes), may be applicable to other scenarios and

problems.

Quantification of attacks. We provide an analysis of dropping

attacks in decryption mix networks, and for the first time

a security game and qualitative and composable measure

of security against dropping attacks.

Effective use of community detection. We show howMiranda

can take advantage of community detection in a novel

way, which allows significant further improvements in its

effectiveness.

1.1 Related Work
Reliability against active, or dropping attacks, in mix networks, has

been the subject of theoretical study and has also been addressed

in various practical ways. The original mix network design [5] by

David Chaum includes facilities for end-to-end receipts, that were

however fragile since they potentially leak information about the

destination of messages. Deployed mix networks, such as Mixmas-

ter [30] or Mixminion [6], employ an infrastructure of ‘pingers’ [31],

special clients sending probe traffic through the different paths in

the mix network, and recording publicly the observed reliability

of delivery. The deployed onion router, Tor [14], also operates a

measurement infrastructure to establish the reliability and band-

width of relays [32] by looping or relaying test traffic across the

network. Such systems need to be built with care: test messages

should be indistinguishable from real traffic, and even the identities

of the separate pingers or bandwidth authorities should not betray

their function. Otherwise, byzantine mixes may treat test messages

differently from normal client messages. Furthermore, there is a

challenge of attributing a failure to a specific mix in the cascade or

path.

A more formal design approach considers using reputation to

hold mixes accountable for message delivery [13] or to engineer

reliable cascades over time [16]. There are inherent difficulties in

establishing a global trust metric from local and subjective measure-

ments, and our work tries to address this challenge. The literature

onmix network attacks has established that active ‘trickle and flood’

attacks can use packet delaying or blocking to de-anonymize com-

munications [33], and that generic denial-of-service attacks may be

used to bootstrap attacks on anonymity by forcing re-transmissions

over less secure paths [4]. Active measurements and countermea-

sures were proposed, e.g., RGB-mix [11]; however, no design was

shown to be secure. Furthermore, designs are often assuming unre-

alistic models, e.g., RGB-mix is designed only for anonymity among

peers, i.e., all parties are mixes (no clients) – and this assumption is

key to the proposed mechanism.

In contrast, the literature on secure electronic elections has been

preoccupied with reliable mixing to ensure the integrity of election

results. Early designs such as Flash mixing [21], make use of chal-

lenge messages to establish the correctness of mixing, but some

were found to be flawed [12]. However, two patterns to ensure

reliability have established themselves since the mid-2000: on one

hand re-encryption mix cascades may use zero-knowledge proofs

(ZKP) to show that their outputs are a secret shuffle of their in-

puts [2]; on the other hand, Randomized Partial Checking [22, 24]

(RPC), a cut-and-choose technique, may be used to detect mul-

tiple packet drops with high probability. These techniques have

downsides: they have only been fully explored in the context of re-

encryption mix cascades; they are computationally demanding in

the case of ZKP; and require interactivity and considerable network

bandwidth in the case of RPC. These drawbacks seem to make these

mechanisms inappropriate for anonymization of messages. For ex-

ample, Vuvuzela[35], a recent proposal for anonymous messaging,

uses ‘classical’ layered encryption, but at high costs: a single, fixed

cascade (non-robust and non-scalable), and use-once dead-drops,

resulting in high overhead (must check every possible dead-drop).

Miranda leverages local trust decisions, derived from direct ex-

perience, and uses that experience to exclude paths containing

malicious mixes. The use of graphs of trust decisions to establish

trusted and untrusted regions has been proposed before, in the con-

text of Sybil defenses [9, 36], and based on fast mixing assumptions.

However, empirical works have questioned the validity of the fast

mixing assumption in social networks [29]. In this work, we do not

rely on fast mixing properties of social graphs.

2 MODEL AND PRELIMINARIES
2.1 System Model
The Miranda system enhances anonymity in decryption mix net-

works [5], against malicious mix relays, by detecting adversarial

delaying or dropping of mix packets. The key entities in the mix

network are clients, mixes and a set of directory authorities, which
we define as follows:

Client: A software application used to send messages between

users, using the anonymous communications infrastruc-

ture. We entrust honest clients to also send special loop
messages to themselves through the mix network, that they

can leverage in order to identify mix misbehavior.

Mixes: A set of synchronous timed mixes, arranged in cascades of

fixed length l , that decode and shuffle all packets that arrive

at round Ti , and forward them to their next-hop during

round Ti+1. Honest mixes provide signed receipts for all

the packets they receive, and retain receipts for packets

forwarded from the next mix in their cascade; and report

mixes that are unresponsive.

Directory Authorities: A set of semi-trusted servers, that main-

tain a list of available mixes and links between them, and,

once every epoch, collaboratively generate cascades of l
mixes, based on available links, for the use of clients.

2.2 Threat Model
We assume that all malicious mixes and authorities collude with

an adversary that aims to either deanonymize one or more mes-

sages traveling through the mix network, or aims to disrupt service

2

through denial-of-service attacks. We note that there is a well-

established link between denial-of-service, reliability and degra-

dation of anonymity in mix networks [4]. That said, while the

adversary may control a large portion of the participating entities,

we assume that there are still more honest nodes than malicious

nodes
2
.

The adversary we consider acts as a global passive observer, and
observes all internal states and keys of malicious nodes. Further-

more, it may launch active attacks by controlling all inputs and

outputs of malicious nodes and create all functions of their secret

keys. However, the adversary is limited in terms of active network

attacks: we assume that they cannot drop packets between honest

parties, or delay them for longer than a maximal period. This re-

stricted network adversary is weaker than the standard Dolev-Yao

model, and in line with more contemporary works such as XFT [25]

that assumes honest nodes can eventually communicate. It allows

for more efficient byzantine fault tolerance schemes, such as the

one we present.

We assume there are n mixes, f of which are malicious and h
are honest (n = f + h). We refer to cascades where all mixes are

malicious as fully-malicious cascades, to cascades where all mixes

are honest as fully-honest cascades, and to cascades where only

some of the mixes are honest as semi-honest cascades. Similarly,

we assume there are nd directory authorities, md of which are

malicious and hd are honest (nd =md + hd).

2.3 Cryptographic Primitives
For message encoding and decoding we assume that clients and

mixes use the well-establishedmix packet format Sphinx [7]. Sphinx

ensures all encoded and relayed messages are indistinguishable

from each other, and also allows the sender to confidentially relay

arbitrary information to intermediate mixes and the recipient of the

message. We denote the encoding of a message using the mix for-

mat as Pack(path; routinд;messaдe; rnd), where path denotes the

addresses and public keys of all mixes in the path (cascade), routinд
includes any additional routing information the client wishes to

relay to each intermediary node;messaдe is the final message that

the recipient gets; and rnd is a random string of bits that are used for

all calls to the random number generator relied upon by the packet

format. Sphinx ensures all messages encoded are indistinguishable

from each other to an adversary until they are fully processed and

output by the cascade. The Sphinx packet format is used end-to-end

from the sender of the message to the recipient performing the last

stage of sphinx decoding. We do not rely on the reply-block facility

of the format, and all messages use the forward path constructions.

We assume a PKI providing an authoritative mapping between

mixes and their public keys. We also use a secure signature function

Sign(·), with a matching verification function Verify(·), to exist.

Although Sign and Verify use the relevant cryptographic keys in

their operation, we abuse notations and write them without the

keys, for simplicity.

We also use a ‘keyless hash function’ H (·); more precisely, the

property we require of H (·) is of a pseudo-random generator (PRG).

2
In practice, there are probably multiple non-colluding adversaries, each controlling

its own portion of nodes. While the total number of nodes whom are malicious among

all adversaries’ nodes might exceed the total number of honest nodes, there are still

more honest nodes than any single adversary’s nodes.

2.4 Goals
The key goals of Miranda relate to alleviating and discouraging ac-

tive attacks onmix networks thatmay have an impact on anonymity,

and may facilitate active traffic analysis. This is achieved through

mixes detecting unreliability and directory authorities taking action

to adjust the topology of the network between epochs to marginal-

ize actively malicious nodes. Specifically:

Goal 1. Every active attacks, by a corrupt mix, is detected with
non-negligible probability by at least one honest mix and/or directory.

Goal 2. Every active attack by a rogue mix, results, with non-
negligible probability, with removal of at least one link connected
to the rogue mix, or even removal of the rogue mix itself, from the
graph of available links and mixes from which the directories choose
cascades, from the next epoch.

Goal 3. Repeated application of Miranda lowers the overall preva-
lence and impact of active attacks by corrupt mixes across epochs,
and limit the ability of the adversary to drop packets.

3 MIRANDA’S DESIGN
3.1 Mix Operation
The mix networks we consider, operate in synchronous batches [15]

and in rounds. Each mix receives packets within a time slot, denoted

by a round number r . We include in the routing information sent

within each packet to each mix along the cascade, the exact round

number during which the mix should receive the packet, and the

exact round number during which the mix should forward the

packet. The packets are decoded by each mix, shuffled randomly,

and forwarded to the next mix. Depending on the path constraints

the topology of the mixes may be used in separate cascades, or in a

Stratified network [15]: in the first case, each mix only is part of at

most one cascade at any given epoch, whereas in the second case,

each mix may be part of one or more cascades, typically at different

positions. In all cases, the topology of the network is determined

centrally by a set of directory authorities.

In Miranda, each mix along a cascade provides a receipt upon

receiving a packet, to the sender - a client or the preceding mix

along the cascade; for simplicity, we assume that the receipt is sent

and received within the same round in which the packet was sent.

Mixes record those receipts for packets sent to other mixes. Receipts

are digitally signed [23] statements containing information about

the packet p, in the form of receipt = Sign(p | | receivedflag = 1).
Note that one could reduce the computational overhead related

with public key signature and verification operations, by signing

together multiple receipts, e.g., for multiple packets sent over the

same cascade, and/or by signing the root of a Merkle tree [26], and

prove that received packets are included in the tree; we ignore such

optimization details, which are not even that essential, as signatures

are not that computationally expensive.

In case a receipt is not provided within the expected time slot
3
,

the non-respondingmix, i.e., the onewho didn’t send a receipt, must

be faulty. If the packet was sent by a mix, that mix will inform the

3
Recall that we operate in a synchronous setting, where we can bound the delay of an

acknowledgement.

3

directories; note that the directories cannot identify, merely based

on this message, if the fault is with the non-responding mix or if the

mix who sent the complaint is actually the faulty one in an effort

to discredit a honest mix; therefore, the directory authorities may

only disconnect the link between the two mixes. We later explain

how a client can also cause disconnection of a link connected to the

corrupt mix, upon detecting that the mix failed to send the receipt

to the client.

3.2 Loop Messages
In addition to regular messages that users send to recipients, clients

also send loop messages. These are special messages that a sender

sends to herself periodically through the cascade. Loop messages

are encoded into layered-encrypted packets just like any other

message, making them indistinguishable from “regular" messages

at all stages of their route, including the last hop from the final mix

in the cascade back to the sender.

To efficiently support loops we leverage Sphinx [7]. Loop mes-

sages are encoded into loop packets using Sphinx, and provide a

number of properties:

• Indinstinguishability. Loop packets are indistinguish-

able from normal packets at all stages of their routing

without knowledge of a special opening value;

• Loop Integrity. An opening value convinces everyone

that has seen a packet that the underlying message was

a loop and not a regular message. Furthermore, they are

convinced that the loop packet waswell formed throughout

its path when decoded by all mixes;

• Loop Authenticity. Only the creator of the loop message

may provide a valid opening value, and others cannot easily

construct a valid opening value.

• Loop Security. No one may forge an opening value that

is valid for a non-loop packet created by an honest sender.

To achieve the above properties, loop packets are formed by a

client choosing a random bit-string K , to construct:

pK = Pack(path′ = path + [S];
routinд′ = routinд + [PubS];
messaдe = “loop”;

rnd = H (K))

where S is the address of the sender, and PubS the public key of

the sender. Note that the packet is routed all the way back to the

sender using the sender’s address and public key.

The tuple (S,KS ,path, routinд,K) acts as the opening value. It

may be used to recompute pK as well as all intermediate packets

piK that mixMi should receive and emit. We call this process loop
packet verification. We provide quick security arguments for the

security properties above, heavily relying on the cryptographic

properties of the Sphinx packet format [7].

The indinstinguishability property ensures that two packets,

one encoding a loop (packet 0) and one a regular message (packet

1), cannot be distinguished at any stage of their processing by

a dishonest mix node, without knowledge of the opening value.

This can be argued in two stages: first the the random number

rnd1 used in the regular packet is distributed indistinguishably

from the random number rnd0 = H (K). Secondly, the message0

is padded and encrypted in the body of the Sphinx packet and

protected through a key that may only be derived from the secret

behind PubS and K . Since the adversary does not know any of

those, they cannot distinguish them. Whence the loop packet is

indistinguishable from a regular packet destined to S .
Loop Integrity ensures that given an opening, the validity of the

loop packet may be checked by anyone, at all stages of processing.

We note that the Pack function is deterministic, and the Sphinx

encoding internally recreates the packet at all stages of its route.

Thus any verifier may simply re-compute the loop packet p using

the opening values (S,KS ,path, routinд,K) and check that it yields
any packet it has seen, as well as a message ‘loop’, valid keys and

routing information.

Loop Authenticity ensures only the loop packet creator may

provide an opening. This is ensured by the fact that only the creator

may find a K such that H (K) leads to the random seed that would

construct the message (second pre-image resistance). Similarly,

Loop Security holds since, for an arbitrary rnd in a regular packet,

second pre-image resistance ensures it is hard for anyone to find a

K such that rnd = H (K).

3.3 Overview
In order for Alice to send messages anonymously, her client ac-

quires the list of all currently available cascades from the directory

authorities, filters out the cascades which contain mixes it does

not wish to work with, and randomly picks a cascade. Through

that cascade, it sends an encoded mix packet to the first mix of the

chosen cascade, and in return, the first mix sends back a receipt, ac-
knowledging it received the packet. Each mix decodes a successive

layer of encoding and verifies the validity of the expected round t
and well-formedness of the packet. Malformed packets or packets

that arrive on the wrong round are simply dropped. The decrypted

packet is then batched and shuffled with the rest of the decrypted

packets that arrived during the current round, and at the end of the

round, all packets are forwarded to their next hop. The mix expects

a receipt from the next mix acknowledging received packets.

In order to deter active attacks, Alice periodically crafts and

sends Loop messages, encapsulated in encrypted packets in the same

manner as any other message. If a loop message fails to complete

the loop back to Alice, she queries all mixes in the cascade for

evidence whether they have received, processed and forwarded the

loop packet. This allows her to isolate the cascade’s problematic

link which caused the packet to be dropped. Alice then reports

the isolated link to the directory authorities, and receives a signed

receipt on her report stating that the link will no longer be used to

construct future cascades.

At the end of an epoch, directory authorities engage into the

process of generating new cascades for the next epoch, based on the

information that was gathered in the last epoch. Newly generated

cascades do not contain links that were reported, or mixes which

were involved in too many reports (more than f reports).

In the rest of the paper, we separate the discussion of Miranda into

two parts:

(1) Intra-epoch operations. During each epoch packets are

relayed in synchronous rounds; clients may confront mixes

4

to provide evidence they relayed loop messages; and clients

provide evidence of misbehavior to the directory authori-

ties.

(2) Inter-epoch operations. Between epochs authorities pro-
cess all denunciations about mixes’ misbehavior, which

they collected from clients and derive a new set of cas-

cades that they make available for a new epoch.

We discuss the intra-epochs operations in detail in Section 4 and

inter-epoch operations in Section 5.

4 INTRA-EPOCH PROCESS
4.1 Isolating Problematic Links
In order to deter active attacks, clients periodically send loop mes-

sages through their cascades. As clients are both the generators and

recipients of loop messages, they know exactly during which round

the message is expected to arrive. Therefore, if a loop message fails

to ‘complete’ the loop back to the sender, the sender initiates an iso-
lation process – after all mixes were meant to process the message

and record evidence about them. During isolation, the client detects

and isolates the specific problematic node or link in the cascade,

by querying each of the mixes to establish whether they received,

and hence should have forwarded, the respective layer of the loop

packet.

The querying process take place by the client proving to the

mixes that a specific packet was a loop by reveling its opening

value. In the absence of any attacks mixes provide a receipt for

the loop packet to the previous mix; and receive a receipt for the

loop packet they forward. In case of lack of response (and receipt)

from a subsequent mix, honest mixes must sign and share a receipt

reporting the failure. Those receipts are provided to the clients

performing the isolation process, after verifying the claim that a

packet corresponded to a loop message.

A mix which simply drops a loop packet after sending a receipt

to the previous mix can be detected as malicious beyond doubt. The

preceding mix will produce a receipt that the packet was delivered

correctly, but the malicious mix will not be able to produce neither

a receipt that the resulting packet was either forwarded to the next

mix or the link reported as faulty. Thus, malicious mixes have no

incentives to follow this simple strategy to drop messages.

Instead, malicious mixes wishing to drop a packet may lie: they

either do not provide a receipt for a message received (to blame the

previous mix), or create a false report that the subsequent mix never

responded (to blame the subsequent mix). Under those conditions

a client obtains two contradictory responses: one from a mix that

claims it forwarded the packet and one from a mix that claims it did

not receive that packet. These conflicting claims allow the client

to report the problematic link to the directory authorities, proving

that indeed a packet was dropped by one of the conflicting mixes –

however it is hard for the client or any third parties besides the two

mixes to decide which of the two is malicious. Finally, the client

chooses another cascade from the available cascades and continues

as before. i.e., sends messages and loop messages through the new

cascade.

As an example, consider a cascade of l mixesM1, ...,Ml where

Mi is malicious, and pi denotes the subsequent encrypted packet

with loop message that mix Mi received. Mi decides to perform

Algorithm 1 Intra-epoch problematic link isolation

procedure Isolate(path, routinд,K , receipt)
r1 ← receipt
for i ← 2 . . . len(path) do

ri ← Received(path, routinд,K) ▷ execute atMi
end for
for i ← 2 . . . len(path) do

if not ri .receivedFlaд then
σ ← (path, routinд,K , ri−1, ri)
for j ← 1 . . . (md + 1) do

s ← Report(Mi−1,Mi , σ) ▷ execute at Di
if Verify(s) then

break

end if
end for
break

end if
end for

end procedure

procedure Received(path, routinд,K)
p ← Pack(path, routinд, “loop”, PRFK (“loop”))
receivedFlaд← (pi received) ? 1 : 0
return Sign(p | | receivedFlaд)

end procedure

an active attack against pi , i.e., it either drops pi or causes it to be

dropped byMi+1 (e.g., by delaying the packet). Because pi is a loop
packet, the sender queries all the mixes in the cascade whether they

received pi . MixMi can respond only in two following ways

(1) Mi claims it did not receive pi , thus contradictingMi−1’s
response.

(2) Mi claims it did receive and forward pi , thus contradicting
Mi+1’s response.

Due to the focus on the problematic link itself rather than on the

misbehaving mix, in either case, the malicious mix loses a link. The

client acquires two conflicting responses about the link between

(Mi−1,Mi) or (Mi ,Mi+1), and sends these conflicting responses to a
directory authority. The directory authority corroborates the claim

made by the client, and if found valid, records the problematic link.

The combination of packet receipts, disconnection notices, and

the isolation process amplify the effect of the loop packets. It forces

malicious mixes to immediately lose links when they perform active

attacks, by either not responding to the previous mix or recording

a disconnection notice about the subsequent mix. Failure to do so

in a timely manner, leads them to being completely excluded from

the system. This prevents malicious mixes from “silently” attacking

the system and blame other mixes when they are tested through

the isolation mechanism (Goal 2).

To illustrate it, consider the case when a malicious mix decides

to drop a packet. If the malicious mix intends to blame the previous

honest mix, it cannot give the previous mix a receipt for that packet;

otherwise, the honest mix would be able to prove its innocence by

presenting the receipt that refutes the claim it did not sent the packet

to the malicious mix. Such receipt allows to completely exclude the

5

malicious mix from the system. Therefore, because the malicious

mix does not provide a receipt, the previous honest mix immediately

disconnects from the malicious mix (later, if the dropped packet

was a loop packet, isolation would reach the conclusion that the

problematic link was already disconnected). On the other hand, if

the malicious mix intends to blame the subsequent mix, it must

disconnect from the next honest mix before isolation (which might

not even occur, but the malicious mix has no way of knowing

that), otherwise, if isolation would take place, the client can “ask”:

why didn’t you disconnect from the mix who did not send you the

receipt? (this proves mix maliciousness).

The mere threat of loop messages, and the isolation process,

therefore forces malicious mixes to drop a link with an honest mix

for each messages they wish to suppress.

4.2 Reporting a Problematic Link
When clients detect a faulty link, and wish to report it, or when

mixes want to disconnect from other mixes, they need to inform the

directory authorities by broadcasting this information, along with

evidence, to all of them. Each directory authority receives a tuples

of the form (M1,M2,σ), whereM1,M2 are the two mixes connected

by the link, and σ is the ‘evidence’ showing that (at least) one of

the two mixes is faulty. The evidence σ may be either a signed

statement by one of the two mixes, or two conflicting statements

signed by the two mixes.

Unfortunately, directory authorities might also be malicious.

Therefore, they might ignore reports and attempt to maintain as

many malicious links as possible. Our naive approach to prevent

that, is to inform all nd directory authorities on every report, or at

leastmd + 1 directory authorities, thus ensuring that at least one

honest directory authority would be informed. The honest directory

authority will ensure that directories would not be able to ignore

reports when regenerating new cascades.

In order to propagate the evidence (M1,M2,σ) more efficiently,

clients send the evidence to an arbitrary directory authority; this

directory authority would forward the evidence to at leastmd + 1

directory authorities, which will collectively sign it using a shared

signing-key, using a threshold signature scheme, e.g., [19, 34]. Some

faulty directory authorities may not agree to sign; however, this

only requires the directory authority to request other (non-faulty)

authorities to sign. If the selected directory authority does not

return this signed receipt to the client, the client will re-send the

evidence to another directory authority (or directory authorities),

repeating if necessary, thereby ensuring that all such evidences

reach at least one (non-faulty) directory authority.

4.3 Refusing to cooperate
Malicious mixes might attempt to circumvent the protocol by refus-

ing to cooperate in the isolation procedure. Allegedly, this would

prevent the client from obtaining the necessary proof about the

problematic link, thus, preventing the client from convincing direc-

tory authorities of the problematic link. If malicious mixes refuse to

cooperate, the client contacts the directory authority and asks it to

perform isolation on its behalf. The client has the necessary receipt

from the first mix, proving that the packet was indeed sent to the

cascade, so it can prove to the directory authority that the loop

message was indeed sent. If all mixes cooperate with the directory

authority, the directory authority is able to isolate the problematic

link, and disconnect it. If malicious mixes do not cooperate with the

directory authority, the directory authority excludes these mixes

from all cascades.

We note that a malicious client may trick the directory authori-

ties into performing the isolation process on its behalf repeatedly,

against honest mixes. In that case, the honest directory authorities

will conclude that the mix is honest, since it will be in a position

to provide a receipt for the message forwarded or a disconnection

notice. However, this is wasteful to directory authorities and mixes.

We note that clients do not have to be anonymous vis-a-vis di-

rectory authorities, that may record false reports and eventually

exclude abusive clients.

If a first mix does not cooperate by not producing a receipt,

the client can simply choose another cascade. However this, al-

lows malicious mixes to divert traffic from cascades which are not

fully malicious, without being penalized. This allows them to in-

crease the probability that client would select other fully-malicious

cascades instead. To avoid that, clients can force the first mix to

cooperate with the help of a witness. A witness is just another mix

that will relay the packet to the misbehaving first mix. Now, the

misbehaving can no longer refuse to produce a receipt, because the

packet will arrive from the witness (and not from the client), which

allows to perform isolation. If the witness itself is malicious, it will

also refuse to produce a receipt (otherwise, it will lose a link). In

that case, the client can simply choose another witness. Besides

preventing malicious mixes from excluding semi-honest cascades

without losing a link, the client learns about malicious mixes, and

can avoid any future cascade that contains them.

5 INTER-EPOCH PROCESS
In this section, we discuss in detail the inter-epoch operations,

which take place when changing from one epoch to the next one.

The main goal of this process is to select a new random set of

cascades to be used in the coming epoch, avoiding faulty or corrupt

links and mixes. For simplicity of presentation, we assume the mix

network is not used during the inter-epoch process – although

part of the inter-epoch processes may take place concurrently with

mixing. The inter-epoch process consists of the following steps.

Propagating disconnections.Directory authorities share amongst

themselves the evidences they received, and use them to agree on

the set of faulty links and mixes. The evidence consists of reports

of faulty links from mixes, clients or authorities performing the

isolation process. To achieve this, each directory authority sends

to every other directory authority all new evidence of faulty links,

collected since the previous epoch, together with the collective

signature bymd + 1 directory authorities (sent with the receipt to

the mix/client). Since each of these evidences was signed by at least

one non-faulty directory authority, then surely they would now be

all received – with their valid signatures – by all directory authori-

ties, therefore, all directory authorities have exactly the same set of

faulty links.

Note that only links connected to (one or two) faulty mixes are

ever disconnected; hence, any mix which has more than f links

disconnected, must be faulty (we assume thatm < f), and hence

6

the directories exclude that mix completely. Since the directory

authorities share exactly the same set of faulty links, it follows that

they also agree on exactly the same set of faulty mixes. We call this

exclusion process, based on a FM + 1 quorum, the simple malicious
mix filtering step. In section 7 we discuss a more advanced filtering

technique based on community detection.

Select and publish cascades. After all directory authorities have

the same view of the mixes and their links, they select and publish

a (single) set of cascades, to be used by all clients during the coming

epoch. In subsection 5.1, we explain the protocol which directory

authorities use to select the cascades, and how it ensures that all

(honest) directory authorities agree on the same set of cascades.

To allow clients to easily confirm that they use the correct set of

cascades, the directory authorities collectively-sign the set that

they determined for each epoch, again using a threshold signature

scheme [19, 34]. Hence, each client can simply retrieve the set from

any directory authority, and validate that it is the correct set (using

a single signature-validation operation).

5.1 Cascades selection protocol
We now define the cascades selection protocol, allowing all directory
authorities to agree on a random set of cascades to be used during

the upcoming epoch. The input to this protocol, in each directory

authority, includes the set of n mixesM = {Mi }ni=1, the desired
number of cascades to be generated nc , the length of cascades l , and
the sets of faulty mixes FM ⊂ M and faulty links FL ⊂ M×M. As

explained above, these inputs are the same for all (non-faulty) mixes.

For simplicity,M, nc and l are fixed throughout the execution.

The goal of the protocol is for all directory authorities to select

the same set of cascades C ⊆ Ml
for the coming epoch, where C

is uniformly chosen from all sets of cascades of length l , limited

to those which satisfy a legitimate cascade predicate Leдit :Ml →
{0, 1}. We describe several possible legitimate cascades predicates

in the next subsection. For example, we usually would not permit

cascades where the same mix appears multiple times, or which

include faulty mixesM ∈ FM or faulty links (M1,M2) ∈ FL .
Given a specific legitimate cascade predicate Leдit , the protocol

selects, in all directory authorities, the same set of cascades, chosen

uniformly at random among all cascades satisfying Leдit . This is
somewhat challenging, considering that sampling, normally, is a

random process, which is unlikely to result in exactly the same

results in all directory authorities.

One way to ensuring correct sampling and common output (set

of cascades), is for the set of directories to compute this (random-

ized) sampling process jointly, using a multi-party secure function

evaluation process, e.g. [20]. However, this is a computationally-

expensive process. We present a much more efficient alternative.

Specifically, all directory authorities run exactly the same sam-

pling algorithm, and for each sampled cascade, validate it using

exactly the same legitimate cascade predicate Leдit . To ensure that

the results obtained by all (honest) directory authorities are identi-

cal, it remains to ensure that they use the same random bits to the

algorithm. To achieve this, while preventing the faulty directory

authorities from biasing the choice of the ‘random’ bits, we can use

any coin-tossing protocol, e.g. [3], amongst the directory author-

ities. Note, that we only need to generate a small number of bits

Algorithm 2 Inter-epoch cascade generation

procedure Generate(l)
for eachMi ∈ M do

if
��FL ∩ {Mi ×M}

�� ≥ f then
FM = FM ∪Mi

end if
end for
M ←M \ FM
C ← {}
while |C| < ξ do
▷ Randomly select a cascade c of l mixes fromM
if Legit(c) then
C ← C ∪ c

end if
end while
return C

end procedure

(security parameter), from which we can generate as many bits as

necessary using a pseudo-random generator
4
.

5.2 Legitimate-cascade predicates Leдit
The cascades selection protocol can use different predicates Leдit to
define legitimate cascades. We now outline some of these predicates.

Note, that some of these predicates are independent and may be

applied together, to eliminate more undesired cascades. Given a

cascade c ∈ Ml
:

• UniqueInCascade(c) = {∀Mi ,Mj ∈ c : i , j}
Each mix is used only once in a particular cascade c .

• NonFaulty(c) = {∀Mi ∈ c : Mi < FM }
Each mix in cascade c is selected only from the set of non-

faulty mixes.

• OnlyInOneCascade(c) = {∀Mi ∈ c, c ′ ∈ C : Mi < c
′}

Any two cascades should not have a common mix.

• ValidNeiдhbors(c) = {∀Mi ,Mi+1 ∈ c : (Mi ,Mi+1) < FL}
For each pair of directly connected mixes in cascade c , this
pair should not be listed in the faulty link set FL .

• ValidNodes(c) = {∀Mi ,Mj ∈ c : (Mi ,Mj) < FL}
Any two mixes in cascade c should not be selected from

the non-faulty link set.

Obviously, other predicates could also be used, but it is impor-

tant to weigh the effects chosen predicates have on the system. For

example, consider using a predicate that enforces a direct constraint

between the chosen cascades, e.g., OnlyInOneCascade . This predi-
cate prevents legitimate cascades c, c ′ from co-existing in C if they

share the same mix. The positive effect of this constraint is that any

semi-honest cascade c ∈ C, literally prevents all fully-malicious

cascades that contain common malicious mixes with c , from being

included in C. On the other hand, because of the same constraint,

4
It seems tempting to do the coin-tossing process only once, at the beginning of the

execution; however, notice that, at least in theory, this may allow the attacker to

cleverly select the faults so as to manipulate the choice of cascades; as a simple way to

prevent such attack, the protocol would run coin-tossing once every epoch, after all

faults were collected and agreed upon.

7

0 20 40 60 80 100

Percent of link losses (%)

0

20

40

60

80

100

Pe
rc

en
t o

f c
as

ca
de

s (
%

)

ValidNeighbors:

ValidNodes:

Fully-honest

Fully-honest

Semi-honest

Semi-honest

Fully-malicious

Fully-malicious

Figure 1: Probability of picking cascades as function of link
losses inValidNeiдhbors in comparison toValidNodes, where
l = 4 and the adversary controls 30% of the mixes.

the number of possible cascades ξ in every epoch is significantly

small. An adversary could take advantage of that to improve the

probability of picking fully-malicious cascades during an epoch

(see section 6.1). To see how too small ξ value drastically improves

the abilities of the attacker, see figure 4.

Alternatively, predicates ValidNeiдhbors and ValidNodes do

not prevent ξ from having a large value; therefore, they foil the

feasibility of the previous attack. However, they do not limit ξ at

all, and that affects both efficiency and anonymity. If mixes can

appear in more than one cascade, some mixes might appear in

more cascades than others; therefore, traffic probably would not

distribute evenly among mixes, and moreover, there is no guarantee

that all mixes would even participate in any cascade during an

epoch. Furthermore, choosing too big a ξ value, will disperse users

too thinly among too many cascades, which results in decreased

anonymity.

Predicates also affect the penalization factor. Consider predi-
cates ValidNeiдhbors and ValidNodes , where a single link loss

would exclude different number of cascades in each approach. In

ValidNeiдhbors , all cascades that contained a dropped link are no

longer valid, while in ValidNodes , on top of those cascades, any

other cascade that has any two mixes who disconnected from one

another - is no longer valid. The rationale is that if two mixes are

unwilling to directly communicate, they are unwilling to communi-

cate indirectly as well. Therefore, the price that an adversary pays

for losing a link significantly increases (see figure 1).

6 SECURITY ANALYSIS
We analyze the security of Miranda against passive attacks (subsec-

tion 6.1), and then against active attacks (subsection 6.2).

6.1 Fully-Adversarial Cascade Attacks
The use of uniform-sized (padded) packets, sent once a round by

all clients, suffices to prevent traffic-analysis attacks (by an eaves-

dropping adversary). Furthermore, the use of a cascade of mixes,

where one or more mixes in the cascade is honest, suffices to pro-

tect sender-receiver anonymity against passive attacks by the other

mixes - during a single round, or provided that communication

patterns do not change between rounds. Passive attackers may still

perform long-term attacks based on data gathered through different

rounds (e.g., intersection).

That said, even a passive adversary can easily follow packets

relayed through fully-adversarial cascades. Consequently, such ad-

versaries would like to divert as much traffic as possible to those

fully-adversarial cascades. Attackers can try to maximize their

chances to abuse the protocol, by (1) increasing the probability

of fully-adversarial cascades being offered as one of the cascades

in the set C which the directory authorities produce during the

inter-epoch process, and/or (2) increasing the probability that users

would pick a fully-adversarial cascade from C, during an epoch.

Because cascades are chosen uniformly over all valid cascades,

the only way adversaries can influence cascades generation pro-

cess, is by excluding non-fully-adversarial cascades. But, they can

only exclude cascades by dropping links they are a part of. Hence,

adversaries cannot exclude any honest links (because both mixes

are honest). Moreover, they cannot exclude an honest mix from

the system, because even if all adversarial mixes will disconnect

from an honest mix, it’s still not enough to exclude the honest mix,

because we assume that m < f . For those reasons, adversaries

cannot exclude any fully-honest cascades. Also, adversaries are

unlikely to exclude adversarial links, since it will cause the loss

of fully-adversarial cascades. However, adversaries are able to dis-

connect semi-honest cascades, by disconnecting semi-honest links,

and thereby increase the probability of picking a fully-adversarial

cascade.

Interestingly, we found that the attack only slightly increases

the chance of selecting a fully-adversarial cascade - while signifi-

cantly increasing the chance of selecting a fully-honest cascade, see

Claim 1 and Figure 2. Specifically, this strategy has the following

outcomes: (1) significantly improves the probability of choosing a

fully-honest cascade (see Figure 3), and (2) makes it easier to detect

and eliminate sets of connected adversarial domains (see Section 7).

Claim 1. The maximum probability to pick a fully-adversarial
cascade during cascades generation process, after the semi-honest
cascades were excluded by the adversary is

Pr(fully adversarial) ≤
(

m

h − l + 1

)l
.

Argument. Initially, the probability that a randomly selected

cascade is fully-adversarial is Pr(fully adversarial) =
m!

(m−l)!
n!
(n−l)!

=
m!(n−l)!
n!(m−l)! .

After the adversary disconnects all semi-honest cascades, the total

number of all possible permutations of cascades is
m!

(m−l)! +
h!
(h−l)! .

Thus, since each cascade is selected uniformly at random we obtain

the probability of a picking fully-adversarial cascade measured as

Pr(fully adversarial) =
m!

(m−l)!
m!

(m−l)! +
h!
(h−l)!

=

(
1 +

h!(m − l)!
m!(h − l)!

)−1
≤ m!(h − l)!

h!(m − l)! ≤
(

m

h − l + 1

)l
.

□

8

10 15 20 25 30 35 40
Percent of malicious mixes (%)

0

5

10

15

20

25

30

M
ax

im
um

 p
ro

ba
bi

lit
y

to
 p

ick

 a
 fu

lly
-m

al
ici

ou
s c

as
ca

de
 (%

)

 Tight bound
cascade length

3
4
5
6

 Loose bound
cascade length

3
4
5
6

Figure 2: The maximum probability of picking a fully-
adversarial cascade as a function of the cascade length and
the power of the adversary.

0 20 40 60 80 100
Percent of link losses (%)

0

20

40

60

80

100

Pe
rc

en
t o

f c
as

ca
de

s (
%

)

Fully-honest
Semi-honest
Fully-malicious

Figure 3: The probability of picking particular classes of cas-
cades after each link loss. The parameters of the simulated
mix network are l = 3, n = 100 andm = 30.

Once ξ = |C| cascades are generated, the adversary could try

to bias the probability of clients choosing a fully-adversarial cas-

cade. To do so, the adversary can sabotage semi-honest cascades [4]

through dropping messages and exclude them all. Figure 4 illus-

trates the number of links the adversary must affect (cost) in order

to achieve a certain probability of success in shifting clients to a

fully-malicious cascade. We note that the larger the number of cas-

cades ξ , the more expensive the attack, and the lower the probability

of success.

6.2 Active Attacks
In this section, we analyze how much information about the sender-

recipient relationship the adversary can infer by performing an

active drop attack.We first define a gamemodeling dropping attacks

and we present the security definition and derive a bound for the

adversary’s advantage.

As before, we consider a network consisting of n mixes, among

whichm are adversarial. A population of users communicates us-

ing the Miranda infrastructure, i.e., by sending messages via the

cascades of mixes.

Security Game.We define a cascade path Px of length l , called tar-
get cascade, which we give to the adversary. As k ≥ 1we denote the

number of compromised nodes on this path, which are controlled

0.01 0.05 0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0 5.0 10.0
Fraction of cascades in an epoch, as percent from total possible cascades

20

40

60

80

100

Pr
ob

ab
ilit

y
of

 c
ho

os
in

g
a

fu
lly

-m
al

ici
ou

s c
as

ca
de

af
te

r t
he

 a
tta

ck
 (%

)

probability

0

100

200

300

400

500

Nu
m

be
r o

f l
in

ks
 to

 d
ro

p
to

 a
ch

ie
ve

 a
tta

ck

cost

Figure 4: The cost / success ratio of performing DoS [4]
attacks based on the fraction of cascades active in every
epoch. Cost (red circle, right axis) is measured in links the
adversary must sacrifice; probability of choosing a fully-
malicious cascade (blue triangle, left axis) as a result of the
attack.

by the adversary. Next, the adversary chooses two target senders

A and B and two target recipients C and D. We assume that the

target senders and recipients communicate using the target path

Px . In one of the rounds the challenger CH selects a secret bit b at

random. Depending on the value of b the following communication

scenarios can happen: if b = 0A sends a challenge message toC and

B sends a challenge message to D, what we denote as A→ C and

B → D, otherwise, i.e., if b = 1, we denote as A→ D and B → C .
The adversary observes the volume of traffic injected by A and

B into the cascade as well as the volume of traffic received by C
and D. In addition to the packets which target senders send to the

target receivers, we assume that also other packets are traversing

the target path, i.e., A and B are sending messages using path Px
to other clients in the network and also recipients C and D receive

messages from other clients in the network. Since the adversary has

no additional knowledge about those packets we call those packets

cover traffic. We assume the volume of this cover traffic follows a

Poisson distribution.

Let xA,xB denote the volume of traffic which the adversary

observes sent by A and B. Similarly, let xC ,xD denote the observed

volume of traffic incoming to recipientC andD. The packets among

xC and xD can be either the challenge packets, i.e., received from

A or B or cover packets. Thus, let us define YC ,YD as the random

variables, which denote the number of cover packets received by

C and D respectively, such that YC ∼ Pois(λC) and YD ∼ Pois(λD).
We define o = (xA,xB ,xC ,xD) as the observation of the volume

of traffic. The goal of the adversary is to guess the value of bit b,
i.e., learn which target sender is communicating with which target

recipient. The adversary wins if the guess is correct.

Adversary advantage. In order to guess b, the adversary performs

an active attack. Note, that we do not focus here on the fact which

mix is controlled by the adversary. The position of the mix in the

path does not have any impact on the adversary’s success. In this

active attack the adversary selects between A and B and drops a

single packet injected by the selected sender.

Without loss of generality, in our analysis we assume that after

A and B flush all their packets in the challenge round, the adversary

9

selects one of packets sent by A and drops it in one of the mixes

she controls. We give the adversary additional information at the

beginning of the game, meaning we tell A which messages sent

by A and B are the challenge messages. This significantly increases

the adversary’s advantage, however in reality the adversary would

have to guess it, which reduces the effectiveness of the attack.

Recall that in case b = 0 then A → C and b = 1 then A →
D. We can bound the likelihood ratio of the observation (xC , xD)
conditioned on b, using an ϵ ≥ 0 and a 0 ≤ δ ≤ 1 as follows:

Claim 1. Given an observation O = (xC ,xD) resulting from a
single observation of the adversary performing a dropping attack on
a single packet sent by A, the relationship of the likelihoods of the
observations conditioned on the secret bit b becomes:

Pr [YC = xC ,YD = xD − 1|b = 0]
≤ eϵ Pr[YC = xC − 1,YD = xD |b = 1] + δ

for δ = 1 −
(∞∑
i=1

CDFYD [(1 + ϵ)i] ·
λie−λ

i!

)
where CDF denotes the cumulative distribution function of the cover
Poisson distribution with rate parameter λ.

Proof. See appendix A.

The security parameters ϵ and δ play a similar role as in differ-

entially privacy [17] security definitions: ϵ represents the maximal

amount by which the likelihood of the two events (b = {0, 1})
changes after an observation of the adversary; δ is the probability

by which the leakage exceeds this ϵ . Small ϵ and δ values are better

for security. We also provide a loose, but analytic, bound on δ as a

function of ϵ and λ.

Claim 2. The value of δ from Claim 1 for sufficiently large values
of parameter λ can be bound as:

δ ≤
(

e−ϵ/2

(1 − ϵ/2)(1−ϵ/2)

)λ
+

(
eϵ/2

(1 + ϵ/2)(1+ϵ/2)

)λ
+

©« e
ϵ
2
− ϵ2

2

(1 + ϵ
2
− ϵ 2

2
)(1+

ϵ
2
− ϵ2

2
)
ª®¬
λ

Proof. See appendix A.2.

Evaluating the leakage (ϵ,δ). Figure 5 shows how δ behaves ac-

cording to the bound (Claim 1) and the exact calculation (Claim 1),

for different values of λ and a fixed leakage ϵ = 0.2. As illustrated

the bound is tighter for large values of λ, whereas for small val-

ues of λ one has to use a more exact calculation to obtain a good

approximation of leakage.

As expected for larger volumes of cover traffic λ the values of δ
become significantly lower, denoting a lesser probability of leakage.

We note however that the leakage, for realistic parameters of say

λ = 10 . . . 100 is quite significant: the adversary may change their

mind towards the correct b by about 20% (interpreting ϵ = 0.2) and

a probability of exceeding this leakage of 30%-10% (δ = 0.3 . . . 0.1).

This supports the findings of previous works, presenting statistical

disclosure attacks [1] and DoS based attacks [4], and arguing that

101 102 103 104 105

Parameter

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
of

Exact value
Chernoff bound

Figure 5: The precision of upper bound for δ presented in
Claim 2 for a fixed ϵ = 0.2. The exact values are computed
using the importance sampling technique.

102 103 104 105 106 107 108 109

Values of

10 7

10 6

10 5

10 4

10 3

10 2

Le
ak

ag
e

Figure 6: The comparison of amounts of leakage ϵ∞ for dif-
ferent values of λ.

the traffic analysis advantage gained from dropping messages is

significant. The leakage drops for larger cover traffic rates λ >
10

3
but expecting each mix client to receive over 1000 messages

per round on average seems unrealistic unless large volumes of

synthetic cover traffic is used.

Leakage (ϵ ,δ) for multiple rounds. The advantage of the (ϵ,δ)
leakage quantification presented in Claim 1 is that it composes

under R multiple rounds of dropping and observations. It can be

shown that after multiple rounds the likelihood ratio of the ob-

servations conditioned on b will follow a similar (ϵR ,δR) relation,

with ϵR = R · ϵ and δR = R · δ . However, those bounds leakage for
multiple observations can also be shown to be tragically loose and

pessimistic – since they assume that the worst case occurs in every

round. In reality and adversary cannot attain such a significant

advantage.

To get a better estimate of adversary’s advantage we consider

directly the ϵ and δ values for multiple observations. As we show

in appendix A for a single observation made by the adversary the

following holds:

Pr [YC = xC ,YD = xD − 1|b = 0]
Pr[YC = xC − 1,YD = xD |b = 1] =

xD
xC
.

10

Using this observation we can compute the estimator ϵ̂ as a mean

value of leakage over R observed rounds, when both xCi ,xDi > 0.

eRϵ̂ =
R∏
i=1

xDi

xCi
⇒ ϵ̂ =

1

R

R∑
i=1

log

(
xDi

xCi

)
,

for full argument see appendix B. This allows us to derive the

average case value of the leakage which the adversary can gain after

multiple concrete observations (xCi ,xDi). From the law of large

numbers [18] we know, that as R grows, the obtained estimator

tends closer to its expected value. And thus:

ϵ∞ = lim

R→∞
ϵ̂ = E[logY/X] for X ,Y ∼ Poisson

+(λ) (1)

where Poisson
+
denotes the Poisson distribution truncated to only

its strictly positive range. The quantity ϵ∞ represents the expected

per-round leakage and thus after R observations we expect the total

leakage to be ϵ = R · ϵ∞
However, we note, that if xC or xD is 0 the adversary can success-

fully distinguish who was communicating with whom immediately

– representing a catastrophic event for which we cannot bound

the leakage under any ϵ . We therefore need to compute the proba-

bility of such an event after R observations and fold it within the

probability δ . The probability a Poisson distribution yields zero is

δ0 = Pr[x = 0] = e−λ . Thus after R observed rounds the probability

that any such event has occurred is:

δ = 1 − (1 − δ0)2R < 2R · δ0 (2)

Equations (1) and (2) conclude our direct estimation of the (ϵ,δ)
for multiple observations. These represent a different trade-off be-

tween the two parameters, than in the single round analysis: the

new δ only represents the catastrophic probabilities any observa-

tion is zero – and not the cases where epsilon may be too large as

in the single round case.

Evaluating multi-round leakage. Figure 6 shows the values of
the leakage estimator ϵ∞ (estimated using Monte Carlo integration

using 10, 000 samples), versus the values of λ. We note that, as the

rate of cover traffic λ grows, the leakage significantly decreases.

For example, for cover traffic rates of λ = 100, the rate of leakage

ϵ∞ = 10
−2
, and thus after R = 100 observations we expect a total

leakage of ϵ = 1 (following Eq. (1)). meanwhile δ0 = e−100 and

overall δ < e−94 (from Eq. (2)) which is tiny.

The fact that as the volume of cover traffic increases, the probabil-

ity δ of a catastrophic event becomes extremely small is comforting.

On the other hand we note that the value of ϵ does grow linearly,

and there is a direct inverse relationship (see Figure 6) between the

rate of cover traffic each user receives and the rate of round leakage.

The value of ϵ that can be tolerated in reality depends on the prior

belief of the adversary: in the simple cryptographic game proposed

the adversary assigns a 50:50 prior likelihood to b = 0 or b = 1. In

a real de-anonymization setting, that prior belief may instead be

much lower: for example if the adversary tries to guess which of

100 potential recipients a target sends a message to, the prior belief

is as low as 1/100.

Two lessons can be drawn from this analysis: (1) users may wish

to limit the number of correlated actions (such as sending to the

same receiver), inline with previous advice relating to preventing

disclosure attacks [1]; (2) Miranda should detect malicious nodes

and remove them from the system, after only a small number of

potential DoS attacks, to ensure the number R of potential observa-

tions remains small. The next section details how we can leverage

community detection to do that.

7 APPLYING COMMUNITY DETECTION
In this section, we show that community detection techniques can

be used to extract more information from reports of faulty links and

mixes, and tilt the choice of cascades towards honest mixes earlier.

We augment the inter-epoch process used by directory authorities

(see Section 5) to select cascades, by performing an additional step

of filtering of nodes and propagating the faulty reports to more

links and nodes – through a community detection algorithm. The

key insight underpinning our approach is that reports of faulty

links can only concern links between the honest set of nodes and

the malicious ones, and thus they ‘separate’ the sub-graph into

those two types of mixes.

Community detection has been used in previousworks to achieve

Sybil detection based on social or introduction graphs [8, 10]. How-

ever, both our aims and the graph-theoretic assumption we base our

analysis on, are very different from those previous works. First, we

consider a fixed set of mixes containing at most FMcorrupt mixes,

and assume that the problem of Sybil attacks is solved through

other means, such as admission control, or resource constraints.

Secondly, we make no assumptions on the mixing times of random

walks on natural ‘social graphs’, which is for the best, since those

have proven through empirical studies to be fragile [28].

Graph, Markov chain, and short walk definition.We augment

the computations performed by directory authorities, during the

inter-epoch period, by an extra step before generating new mix

cascades for the subsequent epoch. We consider the graph G with

vertices ni ∈ M representing mixes in the system. We define an

edge (ni ,nj) ∈ E to exist between each pair of vertices if neither

of ni , nj have been reported as faulty, and neither has the link

between them been dropped by either mixes. We note that the

resulting graph is symmetric, and undirected. At the beginning

of time, before any reports of faults have arrived at the directory

authorities, it is complete since all edges are present. Over time,

and as reports of faulty mixes or links arrive, the graph G becomes

more sparse.

We define a Markov chain on the graph G as a set of probabilistic

transitions for all nodes ni → nj , that we borrow from SybilIn-

fer [10]. We define as Deg(n) the degree of the vertice n, and the

probability of transiting from two vertices ni , nj as:

Pr[nj |ni] = min

{
1

Deg(ni)
,

1

Deg(nj)

}
if (ni ,nj) ∈ E (3)

or 0 otherwise. (4)

and call the matrix of all those transition probabilities Π, and the

remaining probability mass from each node is assigned to a self-

loop. This transition matrix ensures that the stationary distribution

of the Markov walk is uniform across all nodes in connected com-

ponents of G, as shown in [10]. However, a short random walk,

of O(logN) steps, will not converge to the stationary distribution

for sparser G since the walks will tend to remain within regions

11

0 1 2 3 4 5 6
Fraction of faulty reports (%)

0

20

40

60

80

100

Pe
rc

en
t (

%
)

% of Honest-dishonest links removed
% of Non-honest-dishonest links removed
% of Malicious mixes removed

Figure 7: Effect of the community detection mechanism to
detect honest-dishonest links.

of high capacitance. Similar to the insight underpinning Sybil de-

fenses, the random walks starting from honest nodes will tend to

remain within the (fully connected) regions of the graph, and the

missing links between honest and malicious mixes will act as a

barrier to those walks escaping in malicious regions of the graph.

We leverage this insight in the following to bias cascade construc-

tion. We define K = ⌈k · logN ⌉ where k is a small system constant.

We then compute the transition probability matrix Π∗ = ΠK
of a

random walk using transitions Π after a short number of steps K .
Using the matrix Π∗ we can extract the probability a walk starting

at node ni ends up in any node nj which we denote as π∗i [j]. All
directory authorities may compute those distributions determinis-

tically and use the information to infer further faulty links: for any

node ni , we denote as cutoff =m+1 the smallest probability within

π∗i . Then for any node nj such that π∗i [j] < cutoff the directory

authorities remove the link between ni and nj thus further pruning
the graph used to build cascades.

Evaluation of community detection. We evaluate the commu-

nity detection based approach through simulations. Given a fraction

of reported faulty links, we apply community detection and prun-

ing, and estimate three figures of merit: (1) the fraction of total

honest-malicious links that are excluded; (2) the fraction of mali-

cious mixes that are detected by pruning those with degree smaller

than n/2; and (3) the fraction of non-honest-malicious links (links

connecting two honest nodes, or two malicious ones) that are being

removed. The last figure represents the ‘false positive’ rate of our

approach.

We consider a model system with n = 100 mixes, out of which

33% are malicious. We perform random walks of length 7, which

is the ceiling of the natural logarithm of n. We remove at random

a fraction ϕ of distinct reported faulty links, perform community

detection, prune links and nodes, and compute the figures of merit

above. We consider values for ϕ between 0% and 10% of honest-

malicious links. The results are illustrated on Figure 7, and each

data point is the mean of 20 experiments – error bars are negligible.

We observe that the fraction of honest-malicious links ultimately

detected by community detection is a large multiple of the faulty

links originally reported to the directory authorities: for 1% or

originally reported faulty links we can prune about 20% of honest-

dishonest links; for 4% reported we prune over 90% of honest-

dishonest links. Similarly, the number of mixes detected as outright

malicious increases very rapidly in the number of reported faulty

links, once that information has been enhanced greatly by our

community detection: for 2% of reported faulty links we detect

over 20% of malicious nodes; for fewer than 4% of reported faulty

links we detect over 90% of the malicious nodes. One the other

hand, the fraction of non-honest-malicious links mis-categorized

and removed first increases with the number of reported faulty

links (up to a peak of less than 30% for 1.5% reported links) but then

quickly decreases.

Overall evaluation. It is worth contextualizing these results in

terms of absolute numbers: 6% of reported faulty links – leading

to nearly perfect identification of all honest-dishonest links and

malicious nodes – represent merely 270 reports for a network of

100 mixes, out of which 33 are malicious. Achieving the same effect

with the simple filtering strategy would require 1122 reports. This is

in absolute terms a very small number of loop packets that need to

be dropped and isolated, until the network can be rid of malicious

nodes entirely. Assuming, for example, Miranda requires senders

to inject 1% of loop packets to act as a credible detection threat.

Taking the scenario we considered in the previous section where

each observation of the attacker yields an ϵ∞ = 10
−2
, the attacker

has a total attack budget of ϵ = 2.70 to expend on attacking clients

before all malicious nodes are discovered and eliminated – this is

rather small. Even in the case λ = 10 the total attack budget would

be ϵ = 27 across all users.

We conclude that adding community detection to post-process

first-hand reports greatly enhances the ability of the system to

detect malicious links, and leverage those to exclude malicious

nodes. However, due to transient misclassification of non-honest-

malicious links, when the number of reports is low, we recommend

that at each inter-epoch processing directory authorities only con-

sider all first-hand reports received – rather than propagating the

post-processed information – to avoid compounding errors. Despite

being conservative, we show that even after a very small number

of first-hand reports we can detect most honest-dishonest links and

malicious nodes.

8 CONCLUSIONS
Decryption mix networks are one of the most well-known designs

for anonymous communication, due to their simple, natural design

and high efficiency. However, known designs are vulnerable to

subtle attacks by rogue mixes, often by selectively dropping packets.

In fact, it seems that the anonymity research community has largely

given up on the hope of ‘fixing’ layer encryption mix networks to

ensure secure anonymity, andmoved, instead, to more complex, less

efficient designs, or to using decryption mix networks in specialized

scenarios which excludes such attacks. With Miranda we show this

problem is tractable, and can mitigated, at low cost.

REFERENCES
[1] Dakshi Agrawal and Dogan Kesdogan. 2003. Measuring Anonymity: The

Disclosure Attack. IEEE Security & Privacy 1, 6 (2003), 27–34. DOI:http:
//dx.doi.org/10.1109/MSECP.2003.1253565

[2] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for

Correctness of a Shuffle. In Advances in Cryptology - EUROCRYPT 2012 - 31st
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. 263–280.

12

http://dx.doi.org/10.1109/MSECP.2003.1253565
http://dx.doi.org/10.1109/MSECP.2003.1253565

[3] Mihir Bellare, Juan A. Garay, and Tal Rabin. 1996. Distributed Pseudo-Random

Bit Generators : A New Way to Speed-Up Shared Coin Tossing. In Proceedings of
the 15th Annual ACM Symposium on Principles of Distributed Computing (PODC
’96). ACM, New York, USA, 191–200.

[4] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. 2007. Denial

of service or denial of security?. In Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 92–102.

[5] David L Chaum. 1981. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM 24, 2 (1981), 84–90.

[6] George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion:

Design of a type III anonymous remailer protocol. In IEEE Symposium on Security
and Privacy. IEEE, 2–15.

[7] George Danezis and Ian Goldberg. 2009. Sphinx: A Compact and Provably Secure

Mix Format. In 30th IEEE Symposium on Security and Privacy (S&P 2009), 17-20
May 2009, Oakland, California, USA. 269–282.

[8] George Danezis, Chris Lesniewski-Laas, M. Frans Kaashoek, and Ross J. Anderson.

2005. Sybil-Resistant DHT Routing. In Computer Security - ESORICS 2005, 10th
European Symposium on Research in Computer Security, Milan, Italy, September
12-14, 2005, Proceedings. 305–318.

[9] George Danezis and Prateek Mittal. 2009. SybilInfer: Detecting Sybil Nodes using

Social Networks.. In NDSS. San Diego, CA.

[10] George Danezis and Prateek Mittal. 2009. SybilInfer: Detecting Sybil Nodes using

Social Networks. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2009, San Diego, California, USA, 8th February - 11th February
2009.

[11] George Danezis and Len Sassaman. 2003. Heartbeat traffic to counter (n-1)

attacks: red-green-black mixes. In Proceedings of the 2003 ACM workshop on
Privacy in the electronic society. ACM, 89–93.

[12] Yvo Desmedt and Kaoru Kurosawa. 2000. How to break a practical MIX and

design a new one. In Advances in Cryptology—EUROCRYPT 2000. Springer, 557–
572.

[13] Roger Dingledine, Michael J. Freedman, David Hopwood, and David Molnar.

2001. A Reputation System to Increase MIX-Net Reliability. In Information
Hiding, 4th International Workshop, IHW 2001, Pittsburgh, PA, USA, April 25-27,
2001, Proceedings. 126–141.

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-

generation onion router. In 13th USENIX Security Symposium. Usenix.

[15] Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. 2004. Synchronous

batching: From cascades to free routes. In International Workshop on Privacy
Enhancing Technologies. Springer, 186–206.

[16] Roger Dingledine and Paul F. Syverson. 2002. Reliable MIX Cascade Networks

through Reputation. In Financial Cryptography, 6th International Conference, FC
2002, Southampton, Bermuda, March 11-14, 2002, Revised Papers. 253–268.

[17] Cynthia Dwork, Aaron Roth, and others. 2014. The algorithmic foundations of

differential privacy. Foundations and Trends® in Theoretical Computer Science 9,
3–4 (2014), 211–407.

[18] William Feller. 1968. An introduction to probability theory and its applications:
volume I. Vol. 3. John Wiley & Sons New York.

[19] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Robust

Threshold DSS Signatures. In Advances in Cryptology—EUROCRYPT 96 (Lecture
Notes in Computer Science), Ueli Maurer (Ed.), Vol. 1070. Springer-Verlag, 354–

371.

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing.
New York City, 218–229.

[21] Markus Jakobsson. 1999. Flash Mixing. In Proceedings of the Eighteenth An-
nual ACM Symposium on Principles of Distributed Computing, PODC, ’99Atlanta,
Georgia, USA, May 3-6, 1999. 83–89.

[22] Markus Jakobsson, Ari Juels, and Ronald L Rivest. 2002. Making mix nets

robust for electronic voting by randomized partial checking.. In USENIX security
symposium. San Francisco, USA, 339–353.

[23] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve

digital signature algorithm (ECDSA). International journal of information security
1, 1 (2001), 36–63.

[24] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2014. Formal analysis of

chaumian mix nets with randomized partial checking. In Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 343–358.

[25] Shengyun Liu, Christian Cachin, Vivien Quéma, and Marko Vukolic. 2015. XFT:

practical fault tolerance beyond crashes. CoRR, abs/1502.05831 (2015).
[26] Ralph Merkle. 2006. A digital signature based on a conventional encryption

function. In Advances in Cryptology—CRYPTO’87. Springer, 369–378.
[27] Michael Mitzenmacher and Eli Upfal. 2005. Probability and computing: Random-

ized algorithms and probabilistic analysis. Cambridge university press.

[28] Abedelaziz Mohaisen, Huy Tran, Nicholas Hopper, and Yongdae Kim. 2012. On

the mixing time of directed social graphs and security implications. In 7th ACM
Symposium on Information, Compuer and Communications Security, ASIACCS ’12,

Seoul, Korea, May 2-4, 2012. 36–37.
[29] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. 2010. Measuring the mixing

time of social graphs. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement. ACM, 383–389.

[30] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. 2004. Mixmaster

protocol – Version 2. IETF Draft (2004).
[31] Peter Palfrader. 2002. Echolot: a pinger for anonymous remailers. (2002).

[32] Mike Perry. 2009. Torflow: Tor network analysis. Proc. 2nd HotPETs (2009), 1–14.
[33] Andrei Serjantov, Roger Dingledine, and Paul Syverson. 2002. From a trickle

to a flood: Active attacks on several mix types. In International Workshop on
Information Hiding. Springer, 36–52.

[34] Victor Shoup. 2000. Practical Threshold Signatures. In Advances in Cryptology
- EUROCRYPT 2000, International Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding (Lecture
Notes in Computer Science), Bart Preneel (Ed.), Vol. 1807. Springer, 207–220.
http://dx.doi.org/10.1007/3-540-45539-6_15

[35] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA,
USA, October 4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 137–152.

http://dl.acm.org/citation.cfm?id=2815400

[36] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. 2008. Sybillimit:

A near-optimal social network defense against sybil attacks. In Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 3–17.

A PROOFS
In this section, using the definition of the challenge game described
in Section 6.2 we present the proof for Claim 1 and Claim 2.

A.1 Proof of Claim 1
As described in Section 6.2, without the loss of generality we con-

sider a scenario in which the adversary targets sender A. Given

the observation o = (xC ,xD) we consider two cases conditioned by
the events that either b = 0, i.e., A→ C and B → D, or b = 1, i.e.,

A→ D,B → C . We define a differentially private dependency

Pr [YC = xC ,YD = xD − 1|b = 0]
≤ eϵ Pr[YC = xC − 1,YD = xD |b = 1] + δ .

Thus, we compute

Pr [YC = xC ,YD = xD − 1|b = 0]
Pr[YC = xC − 1,YD = xD |b = 1]

=

λxC e−λ
(xC !)

λxD−1e−λ
((xD−1)!)

λxC −1e−λ
((xC−1)!)

λxD e−λ
(xD !)

=
xD
xC
,

Given that, we calculate the values of δ , defined as δ = Pr[YD ≥
eϵYC]. In order to calculate that we use the law of total probability

and the cumulative distribution function, as presented below

Pr[YD ≥ eϵYC] =
∞∑
i=1

Pr[YD ≥ eϵYC |YC = i] Pr[YC = i]

=

∞∑
i=1

Pr[YD ≥ eϵ i] Pr[YC = i]

=

∞∑
i=1

CDFYD [e
ϵ i] · λ

ie−λ

i!
.

A.2 Proof of Claim 2
In this section we present the proof of the upper bound of values

δ , presented in Claim 2. The below bound can be applied to any

13

http://dx.doi.org/10.1007/3-540-45539-6_15
http://dl.acm.org/citation.cfm?id=2815400

values of λ, however when λ is small this bound does not give as

any significant information since it is a loose bound. Thus, for small

values of λ the formula from Claim 1 suits better for computing

values of δ .
As before, we start by applying the law of total probability and

we note, that for small values of ϵ we can approximate eϵ ≈ 1 + ϵ .
Hence,

Pr[YD ≥ (1 + ϵ)YC] =
∞∑
i=1

Pr[YD ≥ (1 + ϵ)YC |YC = i] Pr[YC = i]

=

∞∑
i=1

Pr[YD ≥ (1 + ϵ)i] Pr[YC = i].

Thus, we can split the infinite sum into three separate cases as

follows

Pr[YD ≥ (1 + ϵ)YC] ≤
(1− ϵ

2
)λ∑

i=0
Pr[YC = i] Pr[YD ≥ (1 + ϵ)i]︸ ︷︷ ︸

(I)

+

∞∑
i=(1+ ϵ

2
)λ
Pr[YC = i] Pr[YD ≥ (1 + ϵ)i]︸ ︷︷ ︸

(I I)

+

(1+ ϵ
2
)λ∑

i=(1− ϵ
2
)λ
Pr[YC = i] Pr[YD ≥ (1 + ϵ)i]︸ ︷︷ ︸

(I I I)

.

Now, one can notice that for large values of λ the tails of Poisson

distribution in parts (I) and (I I) are ’heavy’, i.e., accumulate a large

probability mass. Thus, we can bound those tails by 1 without

overestimation. Hence, we obtain

Pr[YD ≥ (1 + ϵ)YC] =
(1− ϵ

2
)λ∑

i=0
Pr[YC = i] +

∞∑
i=(1+ ϵ

2
)λ
Pr[YC = i]

+

(1+ ϵ
2
)λ∑

i=(1− ϵ
2
)λ
Pr[YC = i] Pr[YD ≥ (1 + ϵ)i].

We note that Pr[YD ≥ (1 + ϵ)i] in the sum over i = {
(
1 − ϵ

2

)
λ, . . . ,(

1 + ϵ
2

)
λ} can be bounded as

Pr[YD ≥ (1 + ϵ)i] ≤ Pr[YD ≥ (1 + ϵ)
(
1 − ϵ

2

)
λ].

Following this, we have

Pr[YD ≥ (1 + ϵ)YC]

= Pr[YC ≤
(
1 − ϵ

2

)
λ] + Pr[YC ≥

(
1 +

ϵ

2

)
λ]

+ Pr[YD ≥ (1 + ϵ)
(
1 − ϵ

2

)
λ]
(1+ ϵ

2
)λ∑

i=(1− ϵ
2
)λ
Pr[YC = i]

Since YC is a Poisson distributed variable, and we sum up the prob-

abilities of independent events we can bound the whole sum by 1.

Hence,

Pr [YD ≥ (1 + ϵ)YC] ≤ Pr[YC ≤
(
1 − ϵ

2

)
λ] + Pr[YC ≥

(
1 +

ϵ

2

)
λ]

+ Pr[YD ≥ (1 + ϵ)
(
1 − ϵ

2

)
λ]

(5)

Now by applying the Chernoff inequality [27] we can derive a final

form of our upper bound for δ

δ ≤
(

e−ϵ/2

(1 − ϵ/2)(1−ϵ/2)

)λ
+

(
eϵ/2

(1 + ϵ/2)(1+ϵ/2)

)λ

+

©«
e
ϵ
2
− ϵ2

2(
1 + ϵ

2
− ϵ 2

2

) (
1+ ϵ

2
− ϵ2

2

) ª®®®®¬
λ

.

Note, that the above bound can be made even a little bit tighter,

by doing two more precise steps in equation 5. This concludes the

proof.

B ESTIMATION OF THE LEAKAGE FOR
MULTIPLE OBSERVATIONS

Given the set of observations O = (o1,o2, . . . ,on), where each

single observation is defined as oi = (xCi ,xDi)., we compute

Pr[(xC1
,xD1
), . . . , (xCR ,xDR)|b = 0]

Pr[(xC1
,xD1
), . . . , (xCR ,xDR)|b = 1]

=

R∏
i=1

Pr[(xCi ,xDi)|b = 0]
Pr[(xCi ,xDi)|b = 1] =

R∏
i=1

xDi

xCi

From the composition theorem of differential privacy we know that

given the value ϵ for a single round, the leakage after n round is

computed as n ·ϵ . However, this is the worst case , since we assume

that in each round we have a worst possible observation. Hence, we

focus on analysing the average case, for which we simulate several

observations (xCi ,xDi) and compute the estimator of the average

leakage as

eRϵ =
R∏
i=1

xDi

xCi
=⇒ log

(
eRϵ

)
= log

(R∏
i=1

xDi

xCi

)
ϵ =

1

R

R∑
i=1

log

(
xDi

xCi

)
.

14

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model and Preliminaries
	2.1 System Model
	2.2 Threat Model
	2.3 Cryptographic Primitives
	2.4 Goals

	3 Miranda's Design
	3.1 Mix Operation
	3.2 Loop Messages
	3.3 Overview

	4 Intra-Epoch Process
	4.1 Isolating Problematic Links
	4.2 Reporting a Problematic Link
	4.3 Refusing to cooperate

	5 Inter-Epoch Process
	5.1 Cascades selection protocol
	5.2 Legitimate-cascade predicates Legit

	6 Security Analysis
	6.1 Fully-Adversarial Cascade Attacks
	6.2 Active Attacks

	7 Applying community detection
	8 Conclusions
	References
	A Proofs
	A.1 Proof of Claim 1
	A.2 Proof of Claim 2

	B Estimation of the leakage for multiple observations

