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Abstract. We extend earlier research on mounting and resisting passive
long-term end-to-end traffic analysis attacks against anonymous message
systems, by describing how an eavesdropper can learn sender-receiver
connections even when the substrate is a network of pool mixes, the at-
tacker is non-global, and senders have complex behavior including gen-
erating padding messages. Additionally, we describe how an attacker can
use extra information about message distinguishability to speed the at-
tack. Finally, we simulate our attacks for a variety of scenarios, focusing
on the amount of information needed to link senders to their recipients.
In each scenario, we show that the intersection attack can still succeed,
albeit more slowly—in some cases, so slowly as to be impractical.

1 Introduction

Mix networks aim to allow senders to anonymously deliver messages to recipients.
One of the strongest attacks against current deployable designs is the long-term
intersection attack. In this attack, a passive eavesdropper observes a large volume
of network traffic and notices that certain recipients are more likely to receive
messages after particular senders have transmitted messages. That is, if a sender
(call her Alice) maintains a fairly consistent pattern of recipients over time, the
attacker can deduce Alice’s recipients.

Researchers have theorized that these attacks should be extremely effective
in many real-world contexts, but so far it has been difficult to reason about when
they would be successful and how long the attacks would take.

Here we extend a version of the long-term intersection attack called the sta-
tistical disclosure attack [12] to work in real-world circumstances. Specifically,
whereas the original model for this attack makes strong assumptions about
sender behavior and only works against a single batch mix, we show how an
attacker can learn Alice’s regular recipients even when:

• Alice chooses non-uniformly among her communication partners, and can
send multiple messages in a single batch.

• The attacker lacks a priori knowledge of the network’s average behavior
when Alice is not sending messages.

• Mixes use a different batching algorithm, such as Mixmaster’s dynamic-pool
algorithm [22, 27] or its generalization [14].



• Alice uses a mix network (of any topology, with synchronous or asynchronous
batching) to relay her messages through a succession of mixes, instead of
using just a single mix.

• Alice disguises when she is sending real messages by sending traffic padding
to mix nodes in the network.

• The attacker can only view a subset of the messages entering and leaving
the network (so long as this subset includes some messages from Alice and
some messages to Alice’s recipients).

• The cover traffic generated by other senders changes slowly over time. (We
do not address this case completely).

Each deviation from the original model reduces the rate at which the attacker
learns Alice’s recipients, and increases the amount of traffic he must observe.

Additionally, we show how an attacker can exploit additional knowledge, such
as distinguishability between messages, to speed these attacks. For example,
the attacker can take into account whether messages are written in the same
language or signed by the same pseudonym, to partition them into different
classes and analyze the classes independently.

The attacks in this paper fail to work when:

• Alice’s behavior is not consistent over time. If Alice does not produce enough
traffic with the same group of regular recipients, the attacker cannot learn
Alice’s behavior.

• The attacker cannot observe how the network behaves in Alice’s absence. If
Alice always sends the same number of messages, in every round, forever, the
attacker may not be able to learn who receives messages in Alice’s absence.

• The attacker cannot tell when the sender is originating messages.

We begin in Section 2 by presenting a brief background overview on mix
networks, traffic analysis, the disclosure attack, and the statistical disclosure
attack. In Section 3 we present our enhancements to the statistical disclosure
attack. We present simulated experimental results in Section 4, and close in
Section 5 with recommendations for resisting this class of attacks, implications
for mix network design, and a set of open questions for future work.

2 Previous work

Chaum [9] proposed hiding the correspondence between sender and recipient
by wrapping messages in layers of public-key cryptography, and relaying them
through a path composed of mixes. Each mix in turn decrypts, delays, and
re-orders messages, before relaying them toward their destinations. Because
some mixes might be controlled by an adversary, Alice may direct her mes-
sages through a sequence or ‘chain’ of mixes in a network, so that no single mix
can link her to her recipient.

Many subsequent designs have been proposed, including Babel [18], Mix-
master [22], and Mixminion [13]. We will not address the differences between
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these systems in any detail: from the point of view of a long-term intersection
attack, the internals of the network are irrelevant so long as the attacker can ob-
serve messages entering and leaving the network, and can guess when a message
entering the network is likely to leave.

Another class of anonymity designs aims to provide low-latency connections
for web browsing and other interactive activities [5, 8, 15, 25], but we do not ad-
dress them in this paper because short-term timing and packet counting attacks
seem sufficient against them [28].

Attacks against mix networks aim to reduce the anonymity of users by linking
anonymous senders with the messages they send, by linking anonymous recipi-
ents with the messages they receive, or by linking anonymous messages with one
another. For a detailed list of attacks, consult [1, 24]. Attackers can trace mes-
sages through the network by observing network traffic, compromising mixes,
compromising keys, delaying messages so they stand out from other traffic, or
altering messages in transit. They can learn a given message’s destination by
flooding the network with messages, replaying multiple copies of a message, or
shaping traffic to isolate a target message from other unknown traffic [27]. At-
tackers can discourage users from using honest mixes by making them unreliable
[1, 16]. They can analyze intercepted message text to look for commonalities be-
tween otherwise unlinked senders [23].

2.1 The intersection attack

Even if all the above attacks are foiled, an adversary can mount a long-term
intersection attack by correlating the times at which senders and receivers are
active [7].

A variety of countermeasures make intersection attacks harder. Kesdogan’s
stop-and-go mixes [20] provide probabilistic anonymity by letting users specify
message latencies, thereby broadening the range of times messages might emerge
from the mix network. Similarly, batching strategies [27] as in Mixmaster and
Mixminion use message pools to spread out the possible exit times for messages.

Rather than expanding the set of messages that might have been sent by a
suspect sender, other designs expand the set of senders that might have sent a
target message. A sender who also runs a node in the mix network can conceal
whether a given message originated at her node or was relayed from another
node [4, 17, 26]. But even with this approach, the adversary can observe whether
certain traffic patterns are present when a user is online (sending) and absent
when a user is offline (not sending) [30, 31].

A sender can also conceal whether she is currently active by consistently
sending decoy (dummy) traffic. Pipenet [10] conceals traffic patterns by constant
padding on every link. Unfortunately, a single user can shut down the network
simply by not sending. Berthold and Langos aim to increase the difficulty of
intersection attacks with a scheme for preparing plausible dummy traffic and
having other nodes send it on Alice’s behalf when she is offline [6], but their
design has many practical problems.
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Finally, note that while the adversary can perform this long-term intersection
attack entirely passively, active attacks (such as blending attacks [27] against a
suspected sender) can help him reduce the set of suspects at each round.

2.2 The disclosure attack

In 2002, Kesdogan, Agrawal, and Penz presented the disclosure attack [19], an
intersection attack against a single sender on a single batch mix.

The disclosure attack assumes a global passive eavesdropper interested in
learning the recipients of a single sender Alice. It assumes that Alice sends mes-
sages to m recipients; that Alice sends a single message (recipient chosen at
random from m) in each batch of b messages; and that the recipients of the
other b− 1 messages are chosen at random from the set of N possible recipients.

The attacker observes the messages leaving the mix and constructs sets Ri

of recipients receiving messages in batch i. The attacker then performs an NP-
complete computation to identify m mutually disjoint recipient sets Ri, so that
each of Alice’s recipients is necessarily contained in exactly one of the sets.
Intersecting these sets with subsequent recipient sets reveals Alice’s recipients.

2.3 The statistical disclosure attack

In 2003, Danezis presented the statistical disclosure attack[12], which makes the
same operational assumptions as the original disclosure attack but is far easier
to implement in terms of storage, speed, and algorithmic complexity.

In the statistical disclosure attack, we model Alice’s behavior as an unknown
vector −→v whose elements correspond to the probability of Alice sending a mes-
sage to each of the N recipients in the system. The elements of −→v corresponding
to Alice’s m recipients will be 1/m; the other N − m elements of −→v will be 0.
We model the behavior of the cover traffic sent by other users as a known vector
−→u each of whose N elements is 1/N .

The attacker derives from each output round i an observation vector −→oi , each
of whose elements corresponds to the probability of Alice’s having sent a message
to each particular recipient in that round. That is, in a round i where Alice has
sent a message, each element of −→oi is 1/b if it corresponds to a recipient who
has received a message, and 0 if it does not. Taking the arithmetic mean O of a
large set of these observation vectors gives (by the law of large numbers):

O =
1
t

t∑
i=i

−→oi ≈
−→v + (b− 1)−→u

b

From this, the attacker estimates Alice’s behavior:

−→v ≈ b

∑t
i=1

−→oi

t
− (b− i)−→u
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Danezis also derives a precondition that the attack will only succeed when
m < N

b−1 , and calculates the expected number of rounds to succeed (with 95%
confidence for security parameter l = 2 and 99% confidence for l = 3) [11]:

t >

[
m · l

(√
N − 1

N
(b− 1) +

√
N − 1
N2

(b− 1) +
m− 1

m

)]2

3 Extending the statistical disclosure attack

3.1 Broadening the attack

Here we examine ways to extend Danezis’s statistical disclosure attack to systems
more closely resembling real-world mix networks. We will examine the time and
information requirements for several of these attacks in Section 4 below, by
running them against simulated networks.

Complex senders, unknown background traffic: First, we relax the re-
quirements related to sender behavior. We allow Alice to choose among her
recipients with non-uniform probability, and to send multiple messages in a sin-
gle batch. We also remove the assumption that the attacker has full knowledge
of the distribution −→u of cover traffic sent by users other than Alice.

To model Alice’s varying number of messages, we use a probability function
Pm such that in every round Alice sends n messages with probability Pm(n).
We still use a behavior vector −→v to represent the probability of Alice sending to
each recipient, but we no longer require Alice’s recipients to have a uniform 1/m
probability. Alice’s expected contribution to each round is thus −→v

∑∞
n=0 nPm(n).

To mount the attack, the attacker first obtains an estimate of the background
distribution −→u by observing a large number t′ of batches to which Alice has not
contributed any messages.1 For each such batch i, the attacker constructs a
vector −→ui , whose elements are 1/b for recipients that have received a message in
that batch, and 0 for recipients that have not. The attacker then estimates the
background distribution −→u as:

−→u ≈ U =
1
t′

t′∑
i=1

−→ui

The attacker then observes, for each round i in which Alice does send a
message, the number of messages mi sent by Alice, and computes observations
−→oi as before. Taking the arithmetic mean of these −→oi gives us

O =
1
t

t∑
i=1

−→oi ≈
m · −→v + (b−m)U

b
where m =

1
t

∑
mi

1 The attack can still proceed if few such Alice-free batches exist, so long as Alice
contributes more to some batches than to others. Specifically, the approach described
below (against pool mixes and mix networks) can exploit differences between low-
Alice and high-Alice batches to infer background behavior.
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From this, the attacker estimates Alice’s behavior as

−→v ≈ 1
m

[
b ·O − (b−m)U

]
Attacking pool mixes and mix networks: Most designs have already aban-
doned fixed-batch mixes in favor of other algorithms that better hide the re-
lation between senders and recipients. Such improved algorithms include timed
dynamic-pool mixes, generalized mixes, and randomized versions of each [14, 27].
Rather than reordering and relaying all the messages whenever a fixed number
b have arrived, these algorithms store received messages in a pool, and at fixed
intervals relay a fraction of the pooled messages based on the pool’s current size.

When attacking such a mix, the attacker no longer knows for certain which
batches of recipients contain a message from Alice. Instead, the attacker can
only estimate, for each batch of output messages, the probability that the batch
includes one of Alice’s messages.

Following Díaz and Serjantov’s approach in [14], we treat these mixing algo-
rithms generically as follows: a mix relays a number of messages at the end of
each round, depending on how many messages it is currently storing. All mes-
sages in the mix’s pool at the end of a round have an equal probability of being
included in that round’s batch. Thus, we can characterize the mix’s batching al-
gorithm as a probability function PMIX(b|s)—the probability that the mix relays
b messages when it has s messages in the pool. Clearly, ∀s,

∑s
b=0 PMIX(b|s) = 1:

the mix will always output between 0 and s messages.
We denote by P i

R(r) the probability that a message arriving in round i leaves
the mix r rounds later. We assume that the attacker has a fair estimate of PR.2

Now, when Alice sends a message in round i, the attacker observes rounds i
through some later round i + k, choosing k so that

∑∞
j=k+1 P i

R(j) is negligible.
The attacker then uses PR to compute Ow, the mean of the observations from
all of these rounds, weighted by the expected number of messages from Alice
exiting in each round:

Ow =
∑

i

k∑
r=0

P i
R(r) ·mi · −−→oi+r ≈

m · −→v + (n−m)−→u
n

To solve for Alice’s behavior −→v , the attacker now needs a good estimate for
the background −→u . The attacker gets this by averaging observations −→ui from
batches with a negligible probability of including messages from Alice. Such
batches, however, are not essential: If the attacker chooses a set of −→ui such that
each round contains (on average) a small number δa > 0 of messages from Alice,
averaging them gives:

U ′ ≈ δa

n
−→v +

1− δa

n
−→u

2 The attacker can estimate PR by sending test messages through the mix, or by
counting the messages entering and leaving the mix and deducing the pool size.
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and the attacker can thus solve again for −→v in the earlier equation for Ow, now
using

−→u ≈ 1
1− δa

[
n · U ′ − δa · −→v

]
Senders can also deviate from the original model by directing their messages

through multi-hop paths in a network of mixes. While using a mix network
increases the effort an attacker must spend to observe all messages leaving the
system, it has no additional effect on intersection attacks beyond changing the
delaying characteristics PR of the anonymity system.

Assume for the sake of simplicity that all mixes have the same delay distribu-
tion PR, and that Alice chooses a path of length `0. The chance of the message
being delayed by a further d rounds is now

P ′
R(`0 + d) =

(
`0 + d− 1

d

)
(1− PD)`0P d

D

If Alice chooses her path length probabilistically according to PL(`), we have

P ′
R(r) =

r∑
`=1

PL(`)
(

r − 1
r − `

)
(1− PD)`P r−`

d

Danezis has independently extended statistical disclosure to pool mixes [11].

Dummy traffic: Alice can also reduce the impact of traffic analysis by period-
ically sending messages into the network that are dropped inside the network.

Although these methods can slow or stop the attacker (as discussed below in
Section 4), the change in the attack itself is trivial: Alice’s behavior vector −→v
no longer adds to 1, since there is now a chance that a message from Alice will
not reach any recipient. Aside from this, the attacker can proceed as before, so
long as Alice sends more messages (including dummies) in some rounds than in
others.

Partial observation: Until now, we have required that the attacker, as a global
passive adversary, observe all the messages entering and leaving the system (at
least, all the messages sent by Alice, and all the messages reaching Alice’s re-
cipients). This requirement is not so difficult as it might seem: to be a “global”
adversary against Alice, an attacker need only eavesdrop upon Alice, and upon
the mixes that deliver messages to recipients. (Typically, not all mixes do so.)

A non-global attacker’s characteristics depending on which parts of the net-
work he can observe. If the attacker eavesdrops on a fraction of the mixes in the
system, he receives a sample3 of the messages entering or leaving the system. If
such an attacker can see some messages from Alice and some messages to her
recipients, he can still converge on the same O and thus the same estimation of
Alice’s behavior, but the attack will require more rounds of observation.
3 But possibly a biased sample, depending on Alice’s path selection algorithm.
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Alternatively, an attacker who eavesdrops on a fraction of the users in the
system receives all of the messages sent to or from those users but no messages
sent to or from other users. So long as one of these users is Alice, the network (to
such an attacker) is as if the messages sent by Alice to unobserved recipients were
dummy messages. Now the attack converges as before, but with only information
concerning the observed recipients: the attacker learns which of the observed
recipients receive messages from Alice, and which do not.

Time-variant background traffic: If Alice’s behavior changes completely and
radically over time, long-term intersection attacks cannot proceed: the attacker
cannot make enough observations of any version or subset of Alice’s behavior to
converge on a v for any of them.

On the other hand, if Alice’s behavior −→v remains consistent while the behav-
ior of the background traffic −→u changes slowly, the attacker still has some hope.
Rather than estimating a single U from observations to which Alice does not
contribute, the attacker estimates a series of successive Ui values based on the
average behavior of the network during comparatively shorter durations of time.
Now the attacker observes −→oi as before and computes the average of −→oi −Ui, as
before. Now,

−→v ∝ 1
t

t∑
i=1

−→oi − Ui

So if an attacker can get good local estimates to −→u , the intersection attack
proceeds as before.

Attacking recipients: Finally, we note that an attacker can find recipients as
well as senders by using slightly more storage and the same computational cost.

Suppose the attacker wishes to know which senders are sending anonymous
messages to a given recipient Bob. The analysis remains the same: the attacker
compares sender behavior in rounds from which Bob probably receives messages
with behavior in rounds from which Bob probably doesn’t receive messages.
The only complication is that the attacker cannot tell in advance when Bob will
receive a message. Therefore, the attacker must remember a window of recent
observations at all times, such that if Bob later receives a message, the chance
is negligible that the message was sent before the first round in the window.

3.2 Strengthening the attack

Section 3.1 showed how to extend the original statistical disclosure attack to
reveal sender–recipient links in a broader range of circumstances.

In this section, rather than broadening the attack to work in new situations
(at the expensive of needing increased traffic), we discuss ways to reduce the
attack’s required amount of traffic by incorporating additional information.
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Exploiting message partitioning: The attacker’s work is simplified if some
output messages are linkable. Two messages are linkable if they are likelier to
originate from the same sender than are two randomly chosen messages. We
consider a special case of linkability, in which we discover linkage by partitioning
messages into separate classes such that messages in the same class are likelier
to come from the same sender than two messages chosen at random.

The easiest scenario for partitioning is pseudonymity: in a typical pseudonym
service, each sender has one or more pseudonyms and all delivered messages
are associated with a pseudonym. An eavesdropper who can connect senders to
their pseudonyms could trivially use this information to connect senders and
recipients. To do so, he might treat pseudonyms as virtual message destinations:
instead of collecting observations −→oi of recipients who receive messages in round
i, the attacker now collects observations −→oi of linkable classes (e.g. pseudonyms)
that receive in round i. Since two distinct senders don’t produce messages in the
same linkability class, the elements of Alice’s −→v and the background −→u are now
disjoint, and thus easier for the attacker to separate.

It’s also possible that the partitioning may not be so perfect: sometimes many
senders will send messages in the same class. For example, two binary documents
written in the same version of MS Word are more likely to be written by the
same sender than two messages selected at random.

To exploit these scenarios, the attacker chooses a set of c partitioning classes
(such as languages or patterns of usage), and assigns to each observed output
message a probability of belonging to each class. The attacker then proceeds as
before, but instead of collecting observation vectors with elements corresponding
the recipients, the attacker now collects observation vectors whose elements cor-
respond to number of messages received in each round by each 〈recipient, class〉
tuple. (If a message might belong to multiple classes, the attacker sets the corre-
sponding element of each possible class to the probability of the message’s being
in that class.) The statistical disclosure attack proceeds as before, but messages
that fall in different classes no longer provide cover for one another.

Exploiting a priori suspicion: Finally, the attacker may have reason to believe
that some messages are more likely to have been sent by the target user than
others. For example, if we believe that Alice speaks Urdu but not Arabic, or that
Alice knows psychology but not astrophysics, then we will naturally suspect that
an Urdu-language message about psychology is more likely to come from Alice
than is an Arabic-language message about astrophysics.

To exploit this knowledge, an attacker can (as suggested in the original sta-
tistical disclosure paper) modify the estimated probabilities in −→oi of Alice having
sent each delivered message.

4 Simulation results

In Section 3.1, we repeatedly claim that each complication of the sender or the
network forces the attacker to gather more information. But how much?
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To find out, we ran a series of simulations of our attacks, first against the
model of the original statistical disclosure attack, then against more sophisti-
cated models. We describe our simulations and present results below.

The original statistical disclosure attack: Our simulation varied the pa-
rameters N (the number of recipients), m (the number of Alice’s recipients), and
b (the batch size). The simulated “Alice” sends a single message every round to
one of her recipients, chosen uniformly at random. The simulated background
sends to b− 1 additional recipients per round, also chosen uniformly at random.
We ran 100 trial attacks for each chosen 〈N,m, b〉 tuple. Each attack was set
to halt when the attacker has correctly identified Alice’s recipients, or when
1,000,000 rounds have passed. (We imposed this cap on run time to keep our
simulator from getting stuck on hopeless cases.)

We present the results of our simulations in Figure 1 (the low-m curves are at
the bottom). As expected, the attack becomes more effective when Alice sends
messages to only a few recipients (small m); when there are fewer recipients for
Alice to hide hers among (small N); or when batch sizes are small (small b).
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Fig. 1. Statistical disclosure model: Me-
dian rounds to guess all recipients
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Complex sender behavior and unknown background traffic: The next
simulation examines the consequences of a more complex model for background
traffic, and of several related models for Alice’s behavior.

We model the background as a graph of N communicating parties, each of
whom communicates with some of the others. We build this graph according to
the “scale-free” model proposed in [2] and analyzed in [3], which shares desirable
properties with “small-world” networks [29]. Scale-free networks share the “six
degrees of separation property” (for arbitrary values of six) with small-world net-
works, but also mimic the clustering and ‘organic’ growth of real social networks,
including citations in journals, co-stars in IMDB, and links in the WWW. For
these trial attacks, the background messages were generated by choosing nodes
from the graph with probability proportional to their popularity (connected-
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ness). This simulates a case where users send messages with equal frequency and
choose recipients uniformly from among the people they know.

Again, we simulated trial attacks for different values of N (the number of
recipients) and m (the number of Alice’s recipients). Instead of contributing one
message per batch, however, Alice now contributes messages according to a geo-
metric distribution with parameter PM (such that Alice sends n messages with
probability Pm(n) = (1 − PM )Pn

M ). We also tried two methods for assigning
Alice’s recipients: In the ‘uniform’ model, Alice’s recipients are chosen according
to their connectedness (so that Alice, like everyone else, is likelier to know people
who are already well-known), but Alice still sends to each chosen recipient with
equal probability. In the ‘weighted’ model, not only are Alice’s recipients chosen
according to their connectedness, but Alice also sends to them proportional to
their connectedness. We selected these models to examine the attack’s effective-
ness against users whose behavior is generated with the same model as other
users’ (U), and against users who mimic the background distribution (W).

The results are in Figure 2, along with the results for the original statisti-
cal disclosure attack as reference. As expected, the attack succeeds easily, and
finishes faster against uniform senders than weighted senders for equivalent val-
ues of 〈N,m, b〉. Interestingly, the attack against uniform senders is faster than
the original statistical disclosure attack—because the background traffic is now
clustered about popular recipients, Alice’s recipients stand out more.

Attacking pool mixes and mix network: Pooling slows an attacker by
increasing the number of output messages that can correspond to each input
message. To simulate an attack against pool mixes and mix networks, we abstract
away the actual pooling rule used by the network, and instead assume that the
network has reached a steady state, so that each mix retains the messages in
its pool with the same probability (Pdelay) every round. We also assume that all
senders choose paths of exactly the same length.

Unlike before, ‘rounds’ are now determined not by a batch mix receiving a
fixed number b of messages, but by the passage of a fixed interval of time. Thus,
the number of messages sent by the background is no longer a fixed b−na (where
na is the number of messages Alice sends), but now follows a normal distribution
with mean BG = 125 and standard deviation set arbitrarily to BG/10.4

To examine the effect of pool parameters, we fixed m at 32 and N at 216,
and had Alice use the ‘uniform’ model discussed above. The results of these
simulations are presented in Figure 3. Lines running off the top of the graph
represent cases in which fewer than half of the attacks converged upon Alice’s
recipients within 1,000,000 rounds, and so no median could be found.

4 It’s hard to determine standard deviations for actual message volumes on the de-
ployed remailer network: automatic reliability checkers that send messages to them-
selves (“pingers”) contribute to a false sense of uniformity, while some users generate
volume spikes by sending enormous fragmented files, or maliciously flooding discus-
sion groups and remailer nodes. Neither group blends well with the other senders.
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Fig. 3. Pool mixes and mix networks: Median rounds to guess all recipients

From these results, we see that increased variability in message delay slows
the attack by increasing the number of output messages that may correspond to
any input message from Alice, effectively ‘spreading’ each message across several
output rounds. More interestingly, pooling is most effective at especially high or
especially low volumes of traffic from Alice: the ‘spreading’ effect here makes it
especially hard for the attacker to discern rounds that contain messages from
Alice when she sends few messages, or to discern rounds that don’t contain
Alice’s messages when she sends many messages.

The impact of dummy traffic: Several proposals exist for using dummy mes-
sages to frustrate traffic analysis. Although several of them have been examined
in the context of low-latency systems [21], little work has been done to examine
their effectiveness against long-term intersection attacks.

First, we choose to restrict our examination (due to time constraints) to
the effects of dummy messages in several cases of the pool-mix/mix network
simulation above. Because we are interested in learning how well dummies thwart
analysis, we choose cases where, in the absence of dummies, the attacker had
little trouble in learning Alice’s recipients.

Our first padding strategy (“independent geometric padding”) is based on
the link padding strategy from the Mixminion design [13]: Alice generates a
random number of dummy messages in each round according to a geometric
distribution with parameter Pjunk, independent of her number of real messages.

Padding slows the attack, but does not necessarily stop it. As shown in
Figure 4, geometric padding is most helpful when the underlying mix network
has a higher variability in message delay to ‘spread’ the padding between rounds.
Otherwise, Alice must send far more padding messages to confuse the attacker.
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We are currently running our simulations on other padding models, including
“imperfect threshold padding” (Alice always tries to pad up to a threshold of M
messages per round, but is sometimes offline).

The impact of partial observation: Finally, we examine the degree to which
a non-global passive adversary can mount the statistical disclosure attack. Again,
we base our simulation on the mix network simulation used as the basis for the
padding trials above.

Clearly, if Alice chooses only from a fixed set of entry and exit mixes as
suggested by [31], and the attacker is watching none of her chosen mixes, the at-
tack will fail—and conversely, if the attacker is watching all of her chosen mixes,
the attack proceeds as before. For our simulation, therefore, we assume that all
senders (including Alice) choose all mixes as entry and exit points with equal
probability for each message, and that the attacker is watching some fraction
f of the mixes. We simulate this by revealing each message entering or leaving
the network to the attacker with probability Pobserve = f . The attacker sees a
message when it enters and when it exits with probability (Pobserve)2.

The results in Figure 5 show that the attacker can still implement a long-term
intersection attack even when he is only observing part of the network. When
most of the network is observed (Pobserve > 70% in our results), the attack is
hardly impaired at all. As more of the network is concealed (.4 < Pobserve < .7)
the attack becomes progressively harder. Finally, as Pobserve approaches 0, the
required number of rounds approaches infinity.
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Fig. 5. Partial observation: Median rounds to guess all recipients

5 Conclusions

Our results demonstrate that long-term end-to-end intersection attacks can suc-
ceed in the presence of a variety of complicating factors. In closing, we suggest
several open questions for future work, and offer recommendations for mix net-
work designs.

Questions for future work: Many questions remain before the effectiveness
of long-term intersection attacks can be considered a closed problem.

It would be beneficial to find closed-form equations for expected number of
rounds required to mount these attacks, as Danezis does for statistical disclosure.

The attacks we have discussed here assume a purely passive adversary, but
they can easily be generalized to incorporate information gained by an active
attacker. Past work on avoiding blending attacks [27] has concentrated on pre-
venting an attacker from being certain of Alice’s recipients—but in fact, an active
attack that only reveals slight probabilities about Alice’s recipients can provide
information to speed up the intersection attacks in this paper.

It seems clear that pseudonymous services will fall to intersection attacks
far faster than anonymizing services. How strong is this effect, and can it be
prevented? (We are currently simulating scenarios related to pseudonyms.)

Our analysis has focused on the impact of Alice’s actions on Alice alone. How
do Alice’s actions (for example, choice of padding method) affect other users in
the system? Are there incentive-compatible strategies that provide good security
for all users?
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There are other possible approaches to thwarting traffic analysis, including
alternative padding regimes (as mentioned above in the discussion for Figure 4).
These should be investigated.

Although real social networks behave more like scale-free networks than like
the original disclosure attack’s model, our models for user behavior still have
room for improvement. For example, real users probably do not send messages
with a time-invariant geometric distribution: most people’s email habits are
based on a 24-hour day, and a 7-day week. The effects of this variation may
be significant.

Many of our simulations found “sweet spots” for settings such as mix pool
delay, message volume, padding volume, and so on. Identifying those points of
optimality in the wild would be of great practical help for users.

Implications for mix network design: If we were to design a mix network
based on our findings here, what steps should we take to frustrate intersection
attack?

The first lesson is this: high variability in message delays is essential. By
‘spreading’ the effects of each incoming message over several output rounds,
variability in delay increases each message’s anonymity set, and amplifies the
effect of padding.

Padding seems to slow traffic analysis, especially as the volume of padding
approaches the volume of the sender’s actual messages, drowning out the signal.
On the other hand, significant padding may be too cumbersome for most users.

Users should be educated about the effects of their chosen message vol-
ume: sending infrequently is safe, especially if the user doesn’t repeat the same
traffic pattern long enough for the attacker to identify it. Conversely, sending
“almost always” is comparatively safe. But users in between appear vulnerable
to intersection attacks.

Mix networks should take steps to minimize the number of messages that
a limited attacker can see entering and exiting the network. Possible approaches
include encouraging users to run their own mixes; choosing messages’ entry and
exit points to cross geographical and organization boundaries; and (of course)
increasing the number of mixes in the network.

Much threat analysis for high-latency mix networks has aimed to provide
perfect protection against an eavesdropper watching the entire network. But
unless we adopt an unacceptable level of resource demands, it seems that some
highly distinguishable senders will fall quickly, and many ordinary senders will
fall more slowly, to long-term intersection attacks. We must stop asking whether
our anonymity designs can forever defend every conceivable sender. Instead,
we should attempt to quantify how long our designs can defend which senders
against an adversary who sees how much. This paper helps move anonymity
system threat analysis from inflexible security proofs to quantification of risk for
given parameters of adversaries, senders, and mixes.
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