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ABSTRACT

Webbrowser fingerprinting is a powerful tool to identify an
Internet end-user. Previous research has shown that the in-
formation extracted from webbrowsers can uniquely identify
an end-user. To collect webbrowser specific information, in-
tentional JavaScript codes are embedded in web pages. In
this paper, we show that fingerprinting characteristics of a
webbrowser can also be collected by solely checking the net-
work traffic data generated when browsing a website. We
collect network traffic data generated by browsing the home-
page of the most popular websites. Based on this data, we
show that the browser fingerprinting characteristics can be
inferred with high accuracy. Among these characteristics,
type of webbrowser can be identified with over 70% accu-
racy rate. Usage status of popular plug-ins like JavaScript
and flash can also be accurately identified.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues—
Privacy; C.2.0 [Computer-Communication Network]:
General—=Security and Protection

Keywords

Privacy, Webbrowsers, Anonymity

1. INTRODUCTION

Webbrowser fingerprinting is widely used in nowadays In-
ternet environment. Many Web services employ webbrowser
fingerprinting techniques to track end users. The identi-
fication of an end user can import great benefits to web
services providers. For example, an advertisement service
provider can export new car ad to a user if the user once
access auto-vender websites and his/her browser’s finger-
printing is recorded by the website. Among these web-
browser fingerprinting techniques, browser plugins, cookies
and Javascripts codes are used to collect fingerprinting char-
acteristics. These tools can collect webbrowser specific infor-
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mation such as webbrowser’s producer, minor version, plug-
in usages and font usages etc. Combining these information,
an end user can be accurately identified.

The goal of this research is to determine whether the web-
browser fingerprinting characteristics can be obtained based
solely on network traffic. The adversary is not the server,
but any entity between the client and the server. The ad-
versary thus can only eavesdrop on the network traffic. Re-
lying only on the network traffic, the goal is then to iden-
tify the webbrowser being used. For the websites used in
our experiments, the identification accuracy rate of browser
type ranges from 72% to 85%. Popular webbrowser plug-ins
like JavaScript and flash usage status can also be accurately
identified.

All work on webbrowser identification such as [12,17] have
assumed that the identifier entity is located at the server’s
side. That entity has the ability to set cookies, look at
user agent strings, and so on. Using this method, a lot
of information can be collected about the webbrowser such
as the type of browser, the major and minor version of the
browser, plugins installed, the fonts installed, and the web
history. As shown in [4,12], users can be almost uniquely
identified from their webbrowser information.

For network traffic identification, the closest work is web-

site fingerprinting [10, 13, 18, 20]. Looking at anonymized
and encrypted network traffic, an adversary can identify the
website being visited. This is useful for censoring particular
websites. Our work focuses on network traffic analysis and
uses similar techniques to identify webbrowsers.
Threat Model: The threat model considered in this pa-
per is that the client machine, the webbrowser used, and
the server are all honest and free of any malware or bugs.
The adversary can see the traffic between the client and the
server. The adversary could be the client’s ISP or any router
on the path from the client to the server. The network traffic
could be encrypted or in plain-text or through an anonymiz-
ing network such as Tor. The adversary can only eavesdrop
on the network traffic; it cannot modify, drop, or inject any
network packet.

2. RELATED WORK

It has been shown [8,10,13,14,18,20] that analyzing net-
work traffic can reveal the websites and webpages being vis-
ited. The authors looked mostly at packet sizes and packet
direction. They collected a training dataset from specific
websites and clustered the dataset. Given a network traf-
fic trace, the authors used machine learning techniques to
predict the website visited. Website fingerprinting can be
used when users want to hide who they are communicating



with, for example, by using Tor. These users might want
to bypass any censorship mechanism blocking certain web-
sites. Using website fingerprinting, the censor can identify
users accessing censored web content. The latest paper [18]
showed that specific websites can be accurately identified,
only by examining the network trace. Our work differs in
that although we are analyzing network traffic, the traffic
analysis is used to identify and track webbrowsers, not to
fingerprint websites visited.

Panopticlick [4,12] showed how browser information, such
as user agent string, fonts installed, languages supported,
and plugins enabled, can be used to uniquely identify users.
Every user has an almost unique fingerprint and this can
be used to track users visiting different websites or across
different visits to the same website. The main goal of iden-
tifying users is to track them. This is especially useful for
advertising. The EverCookie [3] is a persistent storage that
is not cleared when the browsers cleans its cache and cook-
ies. This permanent cookie can be used to track users. [17]
showed how users can still be tracked without setting any
cookies. FPDetective [7] did a wide survey of popular Inter-
net websites and determined which website was performin-
ing browser fingerprinting. Our work is different because
the fingerprinting is not at the server side; we assume the
server is honest. Instead, the adversary can only eavesdrop
on network traffic between the client and the server.

In an attempt to hide their Internet activities, remain
anonymous, or bypass censors, anonymity-providing schemes
such as Tor [9] and Anonymizer [2] have been deployed.
These schemes only hide who is communicating with whom.
Network traffic analysis can still be performed to identify
any website visited. Server-side fingerprinting can still be
performed to identify users and webbrowsers. There are
tools [5] that attempt to remove identifying or sensitive in-
formation from web headers. However, they do not provide
complete protection as shown in [17,18].

Network traffic analysis have been used for some time [11,
16]. They can be used to detect the application being used
(such as Skype), or more commonly, to deanonymize users.
Various countermeasures such as traffic morphing [19] have
been proposed. A survey of network traffic analysis attacks
and countermeasures is given in [15]. In our work, we lever-
age network traffic analysis to identify and track users from
their webbrowser information.

3. EXPERIMENTAL SETUP
3.1 Collecting Data

Our assumption is that we know which web site the user
is visiting, and we need to identify who is visiting the web
site, that is, to get the fingerprinting information of the web-
browser which the user is using. The information we can use
to reach this goal is only the network traffic generated when
browsing a web page. In this paper, network traffic data are
collected for four types of webbrowsers and homepages of 9
top Alexa [1] websites.

Our experiments are done on Windows 7 platform. The
browsers we run experiments upon are Google Chrome 29.0,
Internet Explorer 10.0, Firefox 24.0 and Tor Browser Bun-
dle 3.6.1. The first three are widely used web browsers. Tor
Browser Bundle is a pre-configured Firefox browser, it inte-
grates Tor software to the webbrowser and takes advantage
of Tor to protect users’ anonymity. Wireshark 1.10.1 is used
to record TCP/IP traffic data.

We use top 9 most popular web sites (downloaded from
Alexa web site [1]), open them in web browsers and record
TCP/IP traffic data. Some web sites support localization,
they will automatically switch to different versions of web
pages according to the region where we launch the browser.
When using Tor Browser bundle, the region of our browser
is determined by the exit node of the Tor circuit. In our
experiments, we specify the region for google.com and ya-
hoo.com as https://www.google.com/ncr and https://us.
yahoo.com/7p=us respectively. In this way, we can ensure
that each time we are visiting the same website. 9 web
sites used in our experiments are: google.com, yahoo.com,
facebook.com, amazon.com, qq.com, taobao.com, live.com,
ebay.com and youtube.com.

To run experiments automatically, we wrote a Java pro-
gram. This program will iterate all these 9 websites and 4
browsers. For each iteration, the following 5 steps are taken:

1. Launch Wireshark to record traffic data.

2. Wait 30 seconds then launch one web browser and con-
nect to a website.

3. Wait 300 seconds then kill web browser.

4. Save traffic data to file, wait 30 seconds then Quit
Wireshark.

5. Wait 300 seconds then go to step 1 and start another
experiment.

For each experiment, we open a website with a specific web
browser and then record all the TCP/IP packets between
the web browser and the web server. Javascript and flash
are two popular plug-ins. With JavaScript, web pages are
more user friendly. With flash, we can watch videos on web
pages. However, JavaScript and flash can also put users
at risk. To avoid this, some users tend to disable them.
Taking usages of JavaScript and flash into consideration,
we define a browser to be in four different status. Except
for Tor Browser Bundle, we perform 10 experiments for each
browser, web page and plugin usages status combination. In
total we have 1440 experiments (4 x9x40). Our experiments
were performed from February 2, 2014 to April 18, 2014.

3.2 Processing Data

To analyze these traffic data, for each experiment, we
transfer the packets information to a data series based on
the direction of packets (outgoing and incoming) and time
series they are recorded. We sum up the packet size for a
specific time frame interval based on the direction of packets.
For outgoing packets, we use negative numbers to represent
them by multiplying the sum of packets size with —1. We
put the browser type at the end of the data series as class
attribute. For each web site, we have 160 (10 x 4 x 4) ex-
periments. Correspondingly we have 160 data series.

In this paper, Weka [6] 3.6.10 is used as the classification
tool. To use Weka, we put all the 160 data series to a file
with .arff file format (the standard Weka dataset file for-
mat). To get the best classification model, we tried ZeroR,
OneR, C4.5, NaiveBayes and SVM (support vector machine)
algorithms. These algorithms are all implemented in Weka.
ZeroR is the base line of classification, basically, it is ran-
domly guessing based on probability. oneR is trying to find
one attribute to classify instances. The test model we used
is 10-fold cross-validation. In this test model, the dataset is



randomly reordered and then split into 10 folds of equal size.
In each iteration, one fold is used for testing and the other
9 folds are used for training the classifier. The test results
are collected and averaged over all folds. Cross validation is
quite useful in dealing with small datasets since it utilizes
the greatest amount of training data from the dataset [6].

4. RESULTS
4.1 Webbrowser type identification

The type of the webbrowser is one of the most common
webbrowser fingerprinting characteristics. Webbrowser type
and version information can be obtained by checking the
http user-agent header. Our assumption is that we can not
see the plain-text of the packets content. All we have is the
time series of packet size. Classification models are built
upon these time series and classification algorithms.

Figure 1 (a) shows the average accuracy rate of identi-
fying browser type for all nine web sites with C4.5 classi-
fication algorithm. In this paper, we use accuracy rate to
represent the performance of a classification model. Sup-
pose 40 experiments with 10 experiments for each one of the
four type of browsers, 8 experiments are correctly classified
as using Chrome, 7 experiments are correctly classified as
using Firefox, then the accuracy rate of identifying Chrome
and Firefox is 80% and 70% correspondingly.

The accuracy rate of identifying browser type is slightly
different for specific browsers. The best one is for Google
Chrome which is identified with 87.27% average accuracy
rate. That means that for all 360 experiments which use
Chrome, 317 (360 x 0.88) of them are correctly identified,
and 43 of them are identified as others. Tor browser bundle
has lowest identification average accuracy at 69.99%. In our
dataset, we have 4 different types of browsers, so the base
line probability of identifying the correct browser type is
25%. Our worst accuracy rate, which is 70% for Tor bundler,
is still 2.8 times the base line accuracy.

For different websites, the accuracy rate of identifying
browser type also changes. Table 1 shows the exact ac-
curacy rate for nine websites. Among these 9 websites, face-
book.com has the best average accuracy which is about 85%
and qq.com has the worst average accuracy which is about
73%. Though 70% accuracy rate is pretty good comparing
to the 25% base line accuracy, there are still some improve-
ments we can make to enhance it. Like Cai’s work [20], we
can round packets size to a multiple of 600 and remove noises
of traffic data. In future work, we will try these modifica-
tions to obtain higher accuracy.

4.2 'Webbrowser plug-ins identification

Besides the browser type, plug-in usage status is also im-
portant characteristic to fingerprint a browser. Our assump-
tion is that we have 13 combinations of browser type and
plug-in usages. For browser Chrome, IE and Firefox, each
of them can have 4 possible plug-in usage combination re-
garding the enabling or disabling of flash and JavaScript
plug-in. For Tor bundle, we use the default plug-in setting.

We run C4.5 classification algorithm against the packet
size series, the test model we used is 10 fold cross verifi-
cation, similar for identifying browser type. Figure 1 (b)
shows that for all 9 websites, the average identification ac-
curacy of combinations of browser type and plug-ins usages.
Combination 1 to 4 are for Chrome, 5 to 8 are for Firefox, 9
to 12 are for IE and combination 13 is for Tor bundle. Be-

Table 1: Identification Accuracy for Specific Website
Identification accuracy (%)

Websites | Chrome | Firefox 1E Tor bundle
amazon 89.74 82.05 64.10 75.68
ebay 84.62 87.18 | 82.05 70.15
facebook 92.50 80.00 | 87.50 81.08
google 95.00 70.00 | 77.50 64.86
live 84.62 82.05 | 89.74 63.64
aq 89.74 61.54 | 74.36 64.86
taobao 76.92 76.92 84.62 69.35
yahoo 85.00 72.50 | 75.00 70.27
youtube 90.00 67.50 | 85.00 73.30
Average 87.27 76.53 | 79.36 69.99

sides Tor bundle, which we use default plug-in setting, the
highest identification accuracy is for combination number 4
which is about 70.62% and the lowest one is for combina-
tion number 11, which is about 31.11%. Since there are 13
classes of browser type and plug-ins usage combination, the
baseline probability of identifying one combination is less
than 7.7% ( 1/13 = 0.0769) . Our worst case of accuracy,
which is 31.11% is more then 4 times of the baseline proba-
bility. When the time frame of the packets size is 2 seconds,
the average accuracy of all 13 combination is about 52.0%,
which is 6.7 times higher than the baseline probability.

For a specific website, the average identification accuracy
of all 13 combinations changes slightly. For websites like
YouTube, eBay and Amazon, they have relatively higher
average identification accuracy. The reason is that their web
pages contains more videos/images, and they use JavaScript
to control how these videos/images are displayed on web
pages. Enabling or disabling JavaScript and flash have much
more influence to the network traffic than other websites.

4.3 Varying time frames and classification al-
gorithms

To get the best result, we tried time frames from 1 second
to 10 seconds to generate the different data series. The basic
idea is that when time frame is smaller, the data series we get
contains finer information about the traffic. On the other
hand, when time frame is smaller, it will take more time
to run the classifier and model is also easier to suffer over-
fitting. Besides the better accuracy rate of classification,
we also need some kind of trade-off between the accuracy
rate and model complexity. Figure 1 (c) shows that for
algorithm C4.5, the time frames we take has slight influence
to the accuracy rate of identifying browser type.

When classifying a dataset, the classification algorithm
chosen usually has great influence to the performance of the
final classification model. Among all these 5 algorithms used
in this paper, the C4.5 algorithm has best performance. It
has around 80% accuracy and the accuracy is relatively sta-
ble for different time frames. Accuracy of NaiveBayes al-
gorithm varies between 60.28% to 72.47% and it seems to
increase as time frames become smaller. But as we take
smaller time frames, say 0.5, its accuracy does not increase.

SVM works badly in our case, there are two reasons: 1)
data series used in this paper are all based on raw data, we
have no data rounding or normalization, and 2) to ensure all
traffic data are recorded, for each experiment, we collect all
traffic data in 5 minutes starting from the launch of accessing
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Figure 1: Average identification accuracy for: (a) different type of browsers when analysis time frame is 2 seconds;
(b) 13 different combinations of browser and plug-ins when time frame is 2 seconds; (c) C4.5 algorithm for different

type of browsers and different time frames.

a web page. This results in a lot of zeros and small random
numbers in the data series because a web page usually can be
loaded in less than 1 minute. These zeros and small random
numbers in data series decrease the classification accuracy
of SVM greatly.

S. DISCUSSION AND CONCLUSION

We have shown that it is possible to identify webbrowsers
characteristics through network traffic analysis only, even if
the network traffic is encrypted and through an anonymized
service such as Tor. The consequences of this research are
numerous. The webbrowsers and plugins used can be identi-
fied through network traffic analysis only. Users can poten-
tially be identified and tracked across sessions and visits to
different websites. The identification entity does not have
to be part of the server. It can be any router along the
path from the user to the server, for example, the ISP of the
server or the user.

Our research also shows that the traffic data is seriously af-
fected by webbrowser specific characteristics. This suggests
that when we perform website fingerprinting based on traffic
data, the webbrowser plays an important role and need to
be considered in future work. There remains more work to
be done in this research area. More experiments need to be
performed. The number of experiments per website need to
be increased. The number of websites tested need to be in-
creased. The reason why the difference of traffic data exists
is also an interesting topic.
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